This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322242 #36 Aug 18 2025 09:58:55 %S A322242 1,3,17,99,609,3843,24689,160611,1054657,6975747,46406097,310171491, %T A322242 2081258529,14011445763,94594402353,640188979299,4341874207617, %U A322242 29502747778563,200803974858641,1368767759442531,9342637825548769,63846282803069187,436797192815981553,2991302112253485411,20504081077963103041,140665546932766467843,965770879590646638929,6635507385062085656931,45621050527781298148257 %N A322242 G.f.: 1/sqrt(1 - 6*x - 7*x^2). %H A322242 Robert Israel, <a href="/A322242/b322242.txt">Table of n, a(n) for n = 0..1184</a> %H A322242 Paveł Szabłowski, <a href="https://cdm.ucalgary.ca/article/view/76214">Beta distributions whose moment sequences are related to integer sequences listed in the OEIS</a>, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 96. %F A322242 a(n) = Sum_{k=0..n} (-1)^(n-k) * 2^k * binomial(n,k)*binomial(2*k,k). %F A322242 a(n) = Sum_{k=0..n} 7^(n-k) * (-2)^k * binomial(n,k)*binomial(2*k,k). %F A322242 a(n) equals the (central) coefficient of x^n in (1 + 3*x + 4*x^2)^n. %F A322242 exp( Sum_{n>=1} a(n)*x^n/n ) = (1-3*x - sqrt(1 - 6*x - 7*x^2))/(8*x^2). %F A322242 D-finite with recurrence: (7*n+7)*a(n) + (9+6*n)*a(n+1) + (-n-2)*a(n+2) = 0. - _Robert Israel_, Dec 10 2018 %F A322242 a(n)^2 = A322243(n), which gives the coefficients in 1 / AGM(1+7*x, sqrt((1-x)*(1-7^2*x))). - _Paul D. Hanna_, Apr 20 2019 %F A322242 a(n) ~ 7^(n + 1/2) / (2^(3/2)*sqrt(Pi*n)). - _Vaclav Kotesovec_, Sep 27 2019 %F A322242 E.g.f.: exp(3*x) * BesselI(0,4*x). - _Ilya Gutkovskiy_, Feb 02 2021 %F A322242 a(n) = 7^n*2F1([1/2, -n], [1], 8/7), where 2F1 is the hypergeometric function. - _Stefano Spezia_, Feb 02 2021 %F A322242 a(n) = (1/4)^n * Sum_{k=0..n} (-1)^k * 7^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - _Seiichi Manyama_, Aug 18 2025 %e A322242 G.f.: A(x) = 1 + 3*x + 17*x^2 + 99*x^3 + 609*x^4 + 3843*x^5 + 24689*x^6 + 160611*x^7 + 1054657*x^8 + 6975747*x^9 + 46406097*x^10 + ... %e A322242 such that A(x)^2 = 1/(1 - 6*x - 7*x^2). %e A322242 RELATED SERIES. %e A322242 Ignoring the initial term, this sequence yields the logarithmic derivative of %e A322242 exp( Sum_{n>=1} a(n)*x^n/n ) = 1 + 3*x + 13*x^2 + 63*x^3 + 329*x^4 + 1803*x^5 + 10229*x^6 + 59559*x^7 + 353873*x^8 + 2136915*x^9 + 13076637*x^10 + ... %e A322242 which equals (1-3*x - sqrt(1 - 6*x - 7*x^2))/(8*x^2). %p A322242 f:= gfun:-rectoproc({(7*n+7)*a(n)+(9+6*n)*a(n+1)+(-n-2)*a(n+2), a(0) = 1, a(1) = 3}, a(n), remember): %p A322242 map(f, [$0..30]); # _Robert Israel_, Dec 10 2018 %t A322242 CoefficientList[Series[1/Sqrt[1-6x-7x^2],{x,0,40}],x] (* _Harvey P. Dale_, Apr 14 2019 *) %o A322242 (PARI) /* Using generating function: */ %o A322242 {a(n) = polcoeff( 1/sqrt(1 - 6*x - 7*x^2 +x*O(x^n)),n)} %o A322242 for(n=0,30,print1(a(n),", ")) %o A322242 (PARI) /* Using binomial formula: */ %o A322242 {a(n) = sum(k=0,n, (-1)^(n-k)*2^k*binomial(n,k)*binomial(2*k,k))} %o A322242 for(n=0,30,print1(a(n),", ")) %o A322242 (PARI) /* Using binomial formula: */ %o A322242 {a(n) = sum(k=0,n, 7^(n-k)*(-2)^k*binomial(n,k)*binomial(2*k,k))} %o A322242 for(n=0,30,print1(a(n),", ")) %o A322242 (PARI) /* a(n) is central coefficient in (1 + 3*x + 4*x^2)^n */ %o A322242 {a(n) = polcoeff( (1 + 3*x + 4*x^2 +x*O(x^n))^n, n)} %o A322242 for(n=0,30,print1(a(n),", ")) %Y A322242 Cf. A322243. %K A322242 nonn %O A322242 0,2 %A A322242 _Paul D. Hanna_, Dec 08 2018