This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322258 #16 Jan 05 2025 19:51:41 %S A322258 4,8,4,9,9,9,8,0,1,2,9,2,9,5,8,0,2,5,2,3,1,7,5,1,3,2,2,3,0,0,9,5,2,4, %T A322258 8,3,4,8,0,6,5,9,9,6,5,6,4,1,5,5,9,5,7,1,2,5,2,7,1,8,0,2,9,1,0,2,9,1, %U A322258 9,2,1,2,8,4,6,5,8,8,5,6,9,3,5,0,1,5,0 %N A322258 Decimal expansion of exp(-phi/sqrt(5)), where phi is the golden ratio. %D A322258 J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, pp. 54-55, p. 182. %H A322258 Don Redmond, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/32-3/redmond.pdf">Infinite products and Fibonacci numbers</a>, Fib. Quart., Vol. 32, No. 3 (1994), pp. 234-239. %H A322258 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A322258 Equals Product_{k>=1} (L(k)/(sqrt(5)*F(k)))^(phi(k)/k), where L(k) and F(k) are the Lucas and Fibonacci numbers, and phi(k) is the Euler totient function. %F A322258 Equals exp(-A242671). %e A322258 0.48499980129295802523175132230095248348065996564155... %t A322258 RealDigits[Exp[-GoldenRatio/Sqrt[5]], 10, 120][[1]] %o A322258 (PARI) exp(-(1+1/sqrt(5))/2) \\ _Charles R Greathouse IV_, Nov 21 2024 %Y A322258 Cf. A000010, A000032, A000045, A001622, A242671, A322259. %K A322258 nonn,cons %O A322258 0,1 %A A322258 _Amiram Eldar_, Dec 01 2018