A322261 Square array T(n, k) (n >= 0, k >= 0) read by antidiagonals upwards: the lengths of runs in binary expansion of T(n, k) correspond to the lengths of runs in binary expansion of n followed by the lengths of runs in binary expansion of k.
0, 1, 1, 2, 2, 2, 3, 5, 5, 3, 4, 6, 10, 4, 4, 5, 9, 13, 11, 11, 5, 6, 10, 18, 12, 20, 10, 6, 7, 13, 21, 19, 27, 21, 9, 7, 8, 14, 26, 20, 36, 26, 22, 8, 8, 9, 17, 29, 27, 43, 37, 25, 23, 23, 9, 10, 18, 34, 28, 52, 42, 38, 24, 40, 22, 10, 11, 21, 37, 35, 59, 53
Offset: 0
Examples
Array T(n, k) begins (in decimal): n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+-------------------------------------------------------- 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 1| 1 2 5 4 11 10 9 8 23 22 21 20 19 2| 2 5 10 11 20 21 22 23 40 41 42 43 44 3| 3 6 13 12 27 26 25 24 55 54 53 52 51 4| 4 9 18 19 36 37 38 39 72 73 74 75 76 5| 5 10 21 20 43 42 41 40 87 86 85 84 83 6| 6 13 26 27 52 53 54 55 104 105 106 107 108 7| 7 14 29 28 59 58 57 56 119 118 117 116 115 8| 8 17 34 35 68 69 70 71 136 137 138 139 140 Array T(n, k) begins (in binary): n\k | 0 1 10 11 100 101 110 111 1000 ----+--------------------------------------------------------------------------- 0| 0 1 10 11 100 101 110 111 1000 1| 1 10 101 100 1011 1010 1001 1000 10111 10| 10 101 1010 1011 10100 10101 10110 10111 101000 11| 11 110 1101 1100 11011 11010 11001 11000 110111 100| 100 1001 10010 10011 100100 100101 100110 100111 1001000 101| 101 1010 10101 10100 101011 101010 101001 101000 1010111 110| 110 1101 11010 11011 110100 110101 110110 110111 1101000 111| 111 1110 11101 11100 111011 111010 111001 111000 1110111 1000| 1000 10001 100010 100011 1000100 1000101 1000110 1000111 10001000
Programs
-
PARI
torl(n) = my (r=[]); while (n, r = concat(valuation(n+(n%2),2), r); n \= 2^r[1];); r fromrl(r) = my (v=0); for (i=1, #r, v = (v + (i%2))*2^r[i]-(i%2)); v T(n,k) = fromrl(concat(torl(n), torl(k)))
Comments