This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322271 #26 Sep 11 2022 12:06:49 %S A322271 1,5,7,11,13,17,19,23 %N A322271 Smallest multiplication factors f, prime or 1, for all b (mod 24), coprime to 24, so that b*f is a nonzero square mod 8 and mod 3. %C A322271 See sequence A322269 for further explanations. This sequence is related to A322269(2). %C A322271 The sequence is periodic, repeating itself after phi(24) terms. Its largest term is 23, which is A322269(2). In order to satisfy the conditions, both f and b must be coprime to 24. %C A322271 The b(n) corresponding to each a(n) is A007310(n). %C A322271 In this case, the sequence is trivial, since each term is being multiplied by itself. The next related sequence, A322272, corresponding to A322269(3), already has several nontrivial terms. %e A322271 The 4th number coprime to 24 is 11. a(4) is 11, because 11 is the smallest prime by which we can multiply 11, so that the product (11*11 = 121) is a square mod 8 and mod 3. %o A322271 (PARI) %o A322271 QresCode(n, nPrimes) = { %o A322271 code = bitand(n,7)>>1; %o A322271 for (j=2, nPrimes, %o A322271 x = Mod(n,prime(j)); %o A322271 if (issquare(x), code += (1<<j)); %o A322271 ); %o A322271 return (code); %o A322271 } %o A322271 QCodeArray(n) = { %o A322271 totalEntries = 1<<(n+1); %o A322271 f = vector(totalEntries); %o A322271 f[totalEntries-3] = 1; \\ 1 always has the same code: ...111100 %o A322271 counter = 1; %o A322271 forprime(p=prime(n+1), +oo, %o A322271 code = QresCode(p, n); %o A322271 if (f[code+1]==0, %o A322271 f[code+1]=p; %o A322271 counter += 1; %o A322271 if (counter==totalEntries, return(f)); %o A322271 ) %o A322271 ) %o A322271 } %o A322271 sequence(n) = { %o A322271 f = QCodeArray(n); %o A322271 primorial = prod(i=1, n, prime(i)); %o A322271 entries = eulerphi(4*primorial); %o A322271 a = vector(entries); %o A322271 i = 1; %o A322271 forstep (x=1, 4*primorial-1, 2, %o A322271 if (gcd(x,primorial)==1, %o A322271 a[i] = f[QresCode(x, n)+1]; %o A322271 i += 1; %o A322271 ); %o A322271 ); %o A322271 return(a); %o A322271 } %o A322271 \\ sequence(2) returns A322271, sequence(3) returns A322272, ... sequence(6) returns A322275. %Y A322271 Cf. A322269, A322272, A322273, A322274, A322275, A007310. %K A322271 nonn,fini,full %O A322271 1,2 %A A322271 _Hans Ruegg_, Dec 01 2018