This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322273 #30 Sep 11 2022 12:06:38 %S A322273 1,11,13,17,19,23,29,31,37,41,43,47,53,59,61,43,71,73,79,83,41,73,101, %T A322273 103,107,109,113,1,127,59,113,19,47,29,79,13,43,47,1,173,11,61,283,71, %U A322273 193,53,31,41,211,29,103,83,61,113,71,241,127,59,37,17,23 %N A322273 Smallest multiplication factors f, prime or 1, for all b (mod 840), coprime to 840 (= 4*7#), so that b*f is a nonzero square mod 8, mod 3, mod 5, and mod 7. %C A322273 See sequence A322269 for further explanations. This sequence is related to A322269(4). %C A322273 The sequence is periodic, repeating itself after phi(840) = 192 terms. Its largest term is 311, which is A322269(4). In order to satisfy the conditions, both f and b must be coprime to 840. Otherwise, the product would be zero mod a prime <= 7. %C A322273 The b(n) corresponding to each a(n) is A008364(n). %C A322273 The first 15 terms are trivial: f=b, and then the product b*f naturally is a square modulo everything. %H A322273 Hans Ruegg, <a href="/A322273/b322273.txt">Table of n, a(n) for n = 1..192</a> %e A322273 The 16th number coprime to 840 is 67. a(16) is 43, because 43 is the smallest prime by which we can multiply 67, so that the product (67*43 = 2881) is a square mod 8, mod 2, mod 3, mod 5, and mod 7. %o A322273 (PARI) %o A322273 QresCode(n, nPrimes) = { %o A322273 code = bitand(n,7)>>1; %o A322273 for (j=2, nPrimes, %o A322273 x = Mod(n,prime(j)); %o A322273 if (issquare(x), code += (1<<j)); %o A322273 ); %o A322273 return (code); %o A322273 } %o A322273 QCodeArray(n) = { %o A322273 totalEntries = 1<<(n+1); %o A322273 f = vector(totalEntries); %o A322273 f[totalEntries-3] = 1; \\ 1 always has the same code: ...111100 %o A322273 counter = 1; %o A322273 forprime(p=prime(n+1), +oo, %o A322273 code = QresCode(p, n); %o A322273 if (f[code+1]==0, %o A322273 f[code+1]=p; %o A322273 counter += 1; %o A322273 if (counter==totalEntries, return(f)); %o A322273 ) %o A322273 ) %o A322273 } %o A322273 sequence(n) = { %o A322273 f = QCodeArray(n); %o A322273 primorial = prod(i=1, n, prime(i)); %o A322273 entries = eulerphi(4*primorial); %o A322273 a = vector(entries); %o A322273 i = 1; %o A322273 forstep (x=1, 4*primorial-1, 2, %o A322273 if (gcd(x,primorial)==1, %o A322273 a[i] = f[QresCode(x, n)+1]; %o A322273 i += 1; %o A322273 ); %o A322273 ); %o A322273 return(a); %o A322273 } %o A322273 \\ sequence(4) returns this sequence. %o A322273 \\ sequence(2) returns A322271, sequence(3) returns A322272, ... sequence(6) returns A322275. %Y A322273 Cf. A322269, A322271, A322272, A322274, A322275, A008364. %K A322273 nonn,fini,full %O A322273 1,2 %A A322273 _Hans Ruegg_, Dec 01 2018