This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322274 #24 Sep 11 2022 12:05:08 %S A322274 1,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101, %T A322274 103,107,109,113,127,131,113,19,29,79,157,67,167,1,173,179,181,71,193, %U A322274 197,31,211,389,103,83,181,233,239,241,463,59,257,263,269,271,277,281,283,1,173,131,283,311,97,53,443,331,193,107,61,257,239,1,103,277 %N A322274 Smallest multiplication factors f, prime or 1, for all b (mod 9240), coprime to 9240 (= 4*11#), so that b*f is a square mod 8, mod 3, mod 5, mod 7, and mod 11. %C A322274 See sequence A322269 for further explanations. This sequence is related to A322269(5). %C A322274 The sequence is periodic, repeating itself after phi(9240) terms. Its largest term is 1873, which is A322269(5). In order to satisfy the conditions, both f and b must be coprime to 9240. Otherwise, the product would be zero mod a prime <= 11. %C A322274 The b(n) corresponding to each a(n) is A008365(n). %C A322274 The first 28 entries are trivial: f=b, and then the product b*f naturally is a square modulo everything. %H A322274 Hans Ruegg, <a href="/A322274/b322274.txt">Table of n, a(n) for n = 1..1920</a> %e A322274 The 30th number coprime to 9240 is 139. a(30) is 19, because 19 is the smallest prime by which we can multiply 139, so that the product (139*19 = 2641) is a square mod 8, and modulo all primes up to 11. %o A322274 (PARI) %o A322274 QresCode(n, nPrimes) = { %o A322274 code = bitand(n,7)>>1; %o A322274 for (j=2, nPrimes, %o A322274 x = Mod(n,prime(j)); %o A322274 if (issquare(x), code += (1<<j)); %o A322274 ); %o A322274 return (code); %o A322274 } %o A322274 QCodeArray(n) = { %o A322274 totalEntries = 1<<(n+1); %o A322274 f = vector(totalEntries); %o A322274 f[totalEntries-3] = 1; \\ 1 always has the same code: ...111100 %o A322274 counter = 1; %o A322274 forprime(p=prime(n+1), +oo, %o A322274 code = QresCode(p, n); %o A322274 if (f[code+1]==0, %o A322274 f[code+1]=p; %o A322274 counter += 1; %o A322274 if (counter==totalEntries, return(f)); %o A322274 ) %o A322274 ) %o A322274 } %o A322274 sequence(n) = { %o A322274 f = QCodeArray(n); %o A322274 primorial = prod(i=1, n, prime(i)); %o A322274 entries = eulerphi(4*primorial); %o A322274 a = vector(entries); %o A322274 i = 1; %o A322274 forstep (x=1, 4*primorial-1, 2, %o A322274 if (gcd(x,primorial)==1, %o A322274 a[i] = f[QresCode(x, n)+1]; %o A322274 i += 1; %o A322274 ); %o A322274 ); %o A322274 return(a); %o A322274 } %o A322274 \\ sequence(5) returns this sequence. %o A322274 \\ Similarly, sequence(2) returns A322271, sequence(3) returns A322272, ... sequence(6) returns A322275. %Y A322274 Cf. A322269, A322271, A322272, A322273, A322275, A008365. %K A322274 nonn,fini,full %O A322274 1,2 %A A322274 _Hans Ruegg_, Dec 01 2018