This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322275 #24 Sep 11 2022 12:04:44 %S A322275 1,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103, %T A322275 107,109,113,127,131,137,139,149,151,157,67,167,173,179,181,191,193, %U A322275 197,199,211,223,83,229,233,239,241,251,257,263,269,271,277,281,283,1,293,307,311,313,317,683,331,337,107,349,353,239,1,103,277,331,47,389 %N A322275 Smallest multiplication factors f, prime or 1, for all b (mod 120120), coprime to 120120 (= 4*13#), so that b*f is a square mod 8, and modulo all primes up to 13. %C A322275 See sequence A322269 for further explanations. This sequence is related to A322269(6). %C A322275 The sequence is periodic, repeating itself after phi(120120) terms. Its largest term is 3583, which is A322269(6). In order to satisfy the conditions, both f and b must be coprime to 120120. Otherwise, the product would be zero mod a prime <= 13. %C A322275 The b(n) corresponding to each a(n) is A008366(n). %C A322275 The first 32 terms are trivial: f=b, and then the product b*f naturally is a square modulo everything. %H A322275 Hans Ruegg, <a href="/A322275/b322275.txt">Table of n, a(n) for n = 1..23040</a> %e A322275 The 44th number coprime to 120120 is 227. a(44) is 83, because 83 is the smallest prime by which we can multiply 227, so that the product (227*83 = 18841) is a square mod 8, and modulo all primes up to 13. %o A322275 (PARI) %o A322275 QresCode(n, nPrimes) = { %o A322275 code = bitand(n,7)>>1; %o A322275 for (j=2, nPrimes, %o A322275 x = Mod(n,prime(j)); %o A322275 if (issquare(x), code += (1<<j)); %o A322275 ); %o A322275 return (code); %o A322275 } %o A322275 QCodeArray(n) = { %o A322275 totalEntries = 1<<(n+1); %o A322275 f = vector(totalEntries); %o A322275 f[totalEntries-3] = 1; \\ 1 always has the same code: ...111100 %o A322275 counter = 1; %o A322275 forprime(p=prime(n+1), +oo, %o A322275 code = QresCode(p, n); %o A322275 if (f[code+1]==0, %o A322275 f[code+1]=p; %o A322275 counter += 1; %o A322275 if (counter==totalEntries, return(f)); %o A322275 ) %o A322275 ) %o A322275 } %o A322275 sequence(n) = { %o A322275 f = QCodeArray(n); %o A322275 primorial = prod(i=1, n, prime(i)); %o A322275 entries = eulerphi(4*primorial); %o A322275 a = vector(entries); %o A322275 i = 1; %o A322275 forstep (x=1, 4*primorial-1, 2, %o A322275 if (gcd(x,primorial)==1, %o A322275 a[i] = f[QresCode(x, n)+1]; %o A322275 i += 1; %o A322275 ); %o A322275 ); %o A322275 return(a); %o A322275 } %o A322275 \\ sequence(6) returns this sequence. %o A322275 \\ Similarly, sequence(2) returns A322271, sequence(3) returns A322272, ... sequence(5) returns A322274. %Y A322275 Cf. A322269, A322271, A322272, A322273, A322274, A008366. %K A322275 nonn,fini,full %O A322275 1,2 %A A322275 _Hans Ruegg_, Dec 01 2018