This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322277 #13 Dec 21 2018 03:27:28 %S A322277 1,11,490,60916,15745548,7477647372,5799397213200,6925325038489152, %T A322277 11958227405868674880,28853103567727115409600, %U A322277 93561657023119005869616000,398720531811315564754326938880,2174628314166392755825875267321600,14941853448103858870808931238617312000 %N A322277 Permanent of an n X n square matrix M(n) formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern. %C A322277 M(n) is defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even. %C A322277 det(M(1)) = 1, det(M(2)) = -5 and det(M(n)) = 0 for n > 2 (proved). %C A322277 The trace of the matrix M(n) is A317614(n). %H A322277 Vaclav Kotesovec, <a href="/A322277/b322277.txt">Table of n, a(n) for n = 1..35</a> %e A322277 For n = 1 the matrix M(1) is %e A322277 1 %e A322277 with permanent a(1) = 1. %e A322277 For n = 2 the matrix M(2) is %e A322277 1, 2 %e A322277 4, 3 %e A322277 with permanent a(2) = 11. %e A322277 For n = 3 the matrix M(3) is %e A322277 1, 2, 3 %e A322277 6, 5, 4 %e A322277 7, 8, 9 %e A322277 with permanent a(3) = 490. %p A322277 with(LinearAlgebra): %p A322277 a := n -> Permanent(Matrix(n, (i, j) -> 1-j+i*n+(-1+2*j-n)*modp(i,2))): %p A322277 seq(a(n), n = 1 .. 20); %t A322277 M[i_, j_, n_] := 1 - j + i n + (-1 + 2 j - n) Mod[i, 2]; a[n_] := Permanent[Table[M[i, j, n], {i, n}, {j, n}]]; Array[a, 20] %o A322277 (PARI) %o A322277 a(n) = matpermanent(matrix(n, n, i, j, if (i % 2, j + n*(i-1), n*i - j + 1))); %o A322277 vector(20, n, a(n)) %Y A322277 Cf. A317614 (trace of matrix M(n)). %Y A322277 Cf. A241016 (row sums of M matrices), A317617 (column sums of M matrices), A074147 (antidiagonals of M matrices). %K A322277 nonn %O A322277 1,2 %A A322277 _Stefano Spezia_, Dec 01 2018