This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322278 #16 Dec 05 2018 16:01:44 %S A322278 1,0,1,0,3,4,0,19,84,38,0,195,2470,3140,728,0,3031,108390,307390, %T A322278 186360,26704,0,67263,7192444,42747460,52630060,18926544,1866256,0, %U A322278 2086099,726782784,9030799218,20784069600,14401134944,3463311488,251548592 %N A322278 Triangle read by rows: T(n,k) is the number of k-colored connected graphs on n labeled nodes up to permutation of the colors. %C A322278 Equivalently, the number of ways to choose a stable partition of a simple connected graph on n labeled nodes with k parts. See A322064 for the definition of stable partition. %H A322278 Andrew Howroyd, <a href="/A322278/b322278.txt">Table of n, a(n) for n = 1..1275</a> %F A322278 T(n,k) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*A322279(n,j). %e A322278 Triangle begins: %e A322278 1; %e A322278 0, 1; %e A322278 0, 3, 4; %e A322278 0, 19, 84, 38; %e A322278 0, 195, 2470, 3140, 728; %e A322278 0, 3031, 108390, 307390, 186360, 26704; %e A322278 0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256; %e A322278 ... %o A322278 (PARI) %o A322278 M(n, K=n)={ %o A322278 my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n)); %o A322278 my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n)); %o A322278 my(W=vector(K, k, Col(serlaplace(log(serconvol(q, p^k)))))); %o A322278 Mat(vector(K, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*W[i])/k!)); %o A322278 } %o A322278 my(T=M(7)); for(n=1, #T, print(T[n, 1..n])) %Y A322278 Row sums are A322064. %Y A322278 Columns k=2..4 are A001832(for n > 1), A322330, A322331. %Y A322278 Right diagonal is A001187. %Y A322278 Cf. A058843, A058875, A322279, A322280. %K A322278 nonn,tabl %O A322278 1,5 %A A322278 _Andrew Howroyd_, Dec 01 2018