This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322279 #15 Dec 03 2018 21:37:15 %S A322279 1,1,0,1,1,0,1,2,0,0,1,3,2,0,0,1,4,6,6,0,0,1,5,12,42,38,0,0,1,6,20, %T A322279 132,618,390,0,0,1,7,30,300,3156,15990,6062,0,0,1,8,42,570,9980, %U A322279 136980,668526,134526,0,0,1,9,56,966,24330,616260,10015092,43558242,4172198,0,0 %N A322279 Array read by antidiagonals: T(n,k) is the number of connected graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color. %C A322279 Not all colors need to be used. %H A322279 Andrew Howroyd, <a href="/A322279/b322279.txt">Table of n, a(n) for n = 0..1274</a> %H A322279 R. C. Read, E. M. Wright, <a href="http://dx.doi.org/10.4153/CJM-1970-066-1">Colored graphs: A correction and extension</a>, Canad. J. Math. 22 1970 594-596. %F A322279 k-th column is the logarithmic transform of the k-th column of A322280. %F A322279 E.g.f of k-th column: 1 + log(Sum_{n>=0} A322280(n,k)*x^n/n!). %e A322279 Array begins: %e A322279 =============================================================== %e A322279 n\k| 0 1 2 3 4 5 6 %e A322279 ---+----------------------------------------------------------- %e A322279 0 | 1 1 1 1 1 1 1 ... %e A322279 1 | 0 1 2 3 4 5 6 ... %e A322279 2 | 0 0 2 6 12 20 30 ... %e A322279 3 | 0 0 6 42 132 300 570 ... %e A322279 4 | 0 0 38 618 3156 9980 24330 ... %e A322279 5 | 0 0 390 15990 136980 616260 1956810 ... %e A322279 6 | 0 0 6062 668526 10015092 65814020 277164210 ... %e A322279 7 | 0 0 134526 43558242 1199364852 11878194300 67774951650 ... %e A322279 ... %o A322279 (PARI) %o A322279 M(n)={ %o A322279 my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n)); %o A322279 my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n)); %o A322279 my(W=Mat(vector(n, k, Col(serlaplace(1 + log(serconvol(q, p^k))))))); %o A322279 matconcat([1, W]); %o A322279 } %o A322279 my(T=M(7)); for(n=1, #T, print(T[n,])) %Y A322279 Columns k=2..5 are A002027, A002028, A002029, A002030. %Y A322279 Cf. A058843, A058875, A322278, A322280. %K A322279 nonn,tabl %O A322279 0,8 %A A322279 _Andrew Howroyd_, Dec 01 2018