cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322280 Array read by antidiagonals: T(n,k) is the number of graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.

This page as a plain text file.
%I A322280 #28 May 16 2024 14:24:54
%S A322280 1,1,0,1,1,0,1,2,1,0,1,3,6,1,0,1,4,15,26,1,0,1,5,28,123,162,1,0,1,6,
%T A322280 45,340,1635,1442,1,0,1,7,66,725,7108,35043,18306,1,0,1,8,91,1326,
%U A322280 20805,254404,1206915,330626,1,0,1,9,120,2191,48486,1058885,15531268,66622083,8488962,1,0
%N A322280 Array read by antidiagonals: T(n,k) is the number of graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.
%C A322280 Not all colors need to be used.
%H A322280 Andrew Howroyd, <a href="/A322280/b322280.txt">Table of n, a(n) for n = 0..1274</a>
%H A322280 R. C. Read, <a href="http://cms.math.ca/10.4153/CJM-1960-035-0">The number of k-colored graphs on labelled nodes</a>, Canad. J. Math., 12 (1960), 410-414.
%H A322280 R. C. Read and E. M. Wright, <a href="http://dx.doi.org/10.4153/CJM-1970-066-1">Colored graphs: A correction and extension</a>, Canad. J. Math. 22 1970 594-596.
%F A322280 T(n,k) = n!*2^binomial(n,2) * [x^n](Sum_{i>=0} x^i/(i!*2^binomial(i,2)))^k.
%F A322280 T(n,k) = Sum_{j=0..k} binomial(k,j)*j!*A058843(n,j).
%e A322280 Array begins:
%e A322280 ===============================================================
%e A322280 n\k| 0 1      2        3          4           5           6
%e A322280 ---+-----------------------------------------------------------
%e A322280 0  | 1 1      1        1          1           1           1 ...
%e A322280 1  | 0 1      2        3          4           5           6 ...
%e A322280 2  | 0 1      6       15         28          45          66 ...
%e A322280 3  | 0 1     26      123        340         725        1326 ...
%e A322280 4  | 0 1    162     1635       7108       20805       48486 ...
%e A322280 5  | 0 1   1442    35043     254404     1058885     3216486 ...
%e A322280 6  | 0 1  18306  1206915   15531268    95261445   386056326 ...
%e A322280 7  | 0 1 330626 66622083 1613235460 15110296325 83645197446 ...
%e A322280 ...
%t A322280 nmax = 10;
%t A322280 T[n_, k_] := n!*2^Binomial[n, 2]*SeriesCoefficient[Sum[ x^i/(i!* 2^Binomial[i, 2]), {i, 0, nmax}]^k, {x, 0, n}];
%t A322280 Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Sep 23 2019 *)
%o A322280 (PARI)
%o A322280 M(n)={
%o A322280   my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
%o A322280   my(q=sum(j=0, n, x^j*j!*2^binomial(j, 2)) + O(x*x^n));
%o A322280   matconcat([1, Mat(vector(n, k, Col(serconvol(q, p^k))))]);
%o A322280 }
%o A322280 my(T=M(7)); for(n=1, #T, print(T[n,]))
%Y A322280 Columns k=0..4 are A000007, A000012, A047863, A191371, A223887.
%Y A322280 Main diagonal gives A372920.
%Y A322280 Cf. A058843, A058875, A322278, A322279.
%K A322280 nonn,tabl
%O A322280 0,8
%A A322280 _Andrew Howroyd_, Dec 01 2018