This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322280 #28 May 16 2024 14:24:54 %S A322280 1,1,0,1,1,0,1,2,1,0,1,3,6,1,0,1,4,15,26,1,0,1,5,28,123,162,1,0,1,6, %T A322280 45,340,1635,1442,1,0,1,7,66,725,7108,35043,18306,1,0,1,8,91,1326, %U A322280 20805,254404,1206915,330626,1,0,1,9,120,2191,48486,1058885,15531268,66622083,8488962,1,0 %N A322280 Array read by antidiagonals: T(n,k) is the number of graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color. %C A322280 Not all colors need to be used. %H A322280 Andrew Howroyd, <a href="/A322280/b322280.txt">Table of n, a(n) for n = 0..1274</a> %H A322280 R. C. Read, <a href="http://cms.math.ca/10.4153/CJM-1960-035-0">The number of k-colored graphs on labelled nodes</a>, Canad. J. Math., 12 (1960), 410-414. %H A322280 R. C. Read and E. M. Wright, <a href="http://dx.doi.org/10.4153/CJM-1970-066-1">Colored graphs: A correction and extension</a>, Canad. J. Math. 22 1970 594-596. %F A322280 T(n,k) = n!*2^binomial(n,2) * [x^n](Sum_{i>=0} x^i/(i!*2^binomial(i,2)))^k. %F A322280 T(n,k) = Sum_{j=0..k} binomial(k,j)*j!*A058843(n,j). %e A322280 Array begins: %e A322280 =============================================================== %e A322280 n\k| 0 1 2 3 4 5 6 %e A322280 ---+----------------------------------------------------------- %e A322280 0 | 1 1 1 1 1 1 1 ... %e A322280 1 | 0 1 2 3 4 5 6 ... %e A322280 2 | 0 1 6 15 28 45 66 ... %e A322280 3 | 0 1 26 123 340 725 1326 ... %e A322280 4 | 0 1 162 1635 7108 20805 48486 ... %e A322280 5 | 0 1 1442 35043 254404 1058885 3216486 ... %e A322280 6 | 0 1 18306 1206915 15531268 95261445 386056326 ... %e A322280 7 | 0 1 330626 66622083 1613235460 15110296325 83645197446 ... %e A322280 ... %t A322280 nmax = 10; %t A322280 T[n_, k_] := n!*2^Binomial[n, 2]*SeriesCoefficient[Sum[ x^i/(i!* 2^Binomial[i, 2]), {i, 0, nmax}]^k, {x, 0, n}]; %t A322280 Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Sep 23 2019 *) %o A322280 (PARI) %o A322280 M(n)={ %o A322280 my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n)); %o A322280 my(q=sum(j=0, n, x^j*j!*2^binomial(j, 2)) + O(x*x^n)); %o A322280 matconcat([1, Mat(vector(n, k, Col(serconvol(q, p^k))))]); %o A322280 } %o A322280 my(T=M(7)); for(n=1, #T, print(T[n,])) %Y A322280 Columns k=0..4 are A000007, A000012, A047863, A191371, A223887. %Y A322280 Main diagonal gives A372920. %Y A322280 Cf. A058843, A058875, A322278, A322279. %K A322280 nonn,tabl %O A322280 0,8 %A A322280 _Andrew Howroyd_, Dec 01 2018