This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322285 #22 Oct 09 2019 13:35:42 %S A322285 0,1,0,1,1,0,2,1,1,0,2,2,1,2,0,2,2,1,1,1,0,2,2,1,1,1,1,0,3,2,2,1,2,1, %T A322285 1,0,3,3,2,3,1,2,2,3,0,3,3,2,2,1,1,2,2,1,0,3,3,2,2,1,1,1,2,1,1,0,3,3, %U A322285 2,2,2,1,2,1,2,1,1,0,3,3,2,2,1,2,1,2,1,2,1,2,0,3,3,2,2,2,1,1,1,2,1,2,1,1,0 %N A322285 Triangle read by rows: T(n,k) is the Damerau-Levenshtein distance between n and k in binary representation, 0 <= k <= n. %C A322285 The Damerau-Levenshtein distance between two sequences is the number of edit operations (deletions, insertions, substitutions, and adjacent transpositions) needed to transform one into the other. %C A322285 For consistency with A152487, the binary representation of 0 is assumed to be "0". If instead 0 is represented as the empty sequence, T(n,0) should be increased by 1 for all n except those of the form 2^m-1 for m >= 0. %C A322285 T(n,k) <= A152487(n,k). %H A322285 Pontus von Brömssen, <a href="/A322285/b322285.txt">Rows n = 0..200, flattened</a> %H A322285 Wikipedia, <a href="https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance">Damerau-Levenshtein distance</a> %H A322285 <a href="http://oeis.org/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A322285 The triangle T(n, k) begins: %e A322285 n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... %e A322285 0: 0 %e A322285 1: 1 0 %e A322285 2: 1 1 0 %e A322285 3: 2 1 1 0 %e A322285 4: 2 2 1 2 0 %e A322285 5: 2 2 1 1 1 0 %e A322285 6: 2 2 1 1 1 1 0 %e A322285 7: 3 2 2 1 2 1 1 0 %e A322285 8: 3 3 2 3 1 2 2 3 0 %e A322285 9: 3 3 2 2 1 1 2 2 1 0 %e A322285 10: 3 3 2 2 1 1 1 2 1 1 0 %e A322285 11: 3 3 2 2 2 1 2 1 2 1 1 0 %e A322285 12: 3 3 2 2 1 2 1 2 1 2 1 2 0 %e A322285 13: 3 3 2 2 2 1 1 1 2 1 2 1 1 0 %e A322285 ... %e A322285 The distance between the binary representations of 46 and 25 is 3 (via the edits "101110" - "10111" - "11011" - "11001"), so T(46,25) = 3. %Y A322285 Cf. A152487. %K A322285 nonn,base,tabl %O A322285 0,7 %A A322285 _Pontus von Brömssen_, Dec 02 2018