This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322286 #31 Feb 28 2020 00:02:52 %S A322286 1,1,1,2,1,1,2,1,1,1,2,2,2,3,1,1,1,2,1,2,2,2,3,3,3,1,1,3,1,1,1,2,2,1, %T A322286 2,2,1,2,2,2,3,3,2,3,2,3,3,5,1,1,1,3,1,1,3,1,1,1,2,2,2,3,1,2,1,1,1,2, %U A322286 2,2,3,4,2,3,2,2,2,3,3,1,3,3,3,5,5,4,1,1,1,3,1,2,3,1,5,3,2,6,1,3,2,1,3,2,1,1,3,3,1,1,1 %N A322286 Lexicographically earliest sequence of positive integers without 4 terms in a weakly increasing arithmetic progression. %C A322286 This is a variation of A248641 (where we only exclude weakly increasing arithmetic progressions): they differ from the 101st term. %C A322286 It is also a variation of A309890 where 3-term is replaced by 4-term. %C A322286 The numbers n for which the n-th term is 1 are given by A005837. %C A322286 There is no upper bound, because if there were an upper bound r then there must be s <= r such that the set of numbers n for which the n-th term is s has positive density and this contradicts Szemerédi's theorem. %C A322286 Assuming Erdős's conjecture on arithmetic progressions, for a fixed positive integer r, the sum of the reciprocals of the numbers n for which the n-th term is r converges. %H A322286 Sébastien Palcoux, <a href="/A322286/b322286.txt">Table of n, a(n) for n = 1..10000</a> %H A322286 Wikipedia, <a href="https://en.wikipedia.org/wiki/Szemerédi%27s_theorem">Szemerédi's theorem</a> %H A322286 Wikipedia, <a href="https://en.wikipedia.org/wiki/Erdős_conjecture_on_arithmetic_progressions">Erdős conjecture on arithmetic progressions</a> %o A322286 (SageMath) %o A322286 cpdef FourFree(int n): %o A322286 cdef int i,r,k,s,L1,L2,L3 %o A322286 cdef list L,Lb %o A322286 cdef set b %o A322286 L=[1,1,1] %o A322286 for k in range(3,n): %o A322286 b=set() %o A322286 for i in range(k): %o A322286 if 3*((k-i)/3)==k-i: %o A322286 r=(k-i)/3 %o A322286 L1,L2,L3=L[i],L[i+r],L[i+2*r] %o A322286 s=3*(L2-L1)+L1 %o A322286 if s>0 and L3==2*(L2-L1)+L1: %o A322286 if L1<=L2: %o A322286 b.add(s) %o A322286 if 1 not in b: %o A322286 L.append(1) %o A322286 else: %o A322286 Lb=list(b) %o A322286 Lb.sort() %o A322286 for t in Lb: %o A322286 if t+1 not in b: %o A322286 L.append(t+1) %o A322286 break %o A322286 return L %Y A322286 Cf. A005837, A248641, A309890. %K A322286 nonn,easy %O A322286 1,4 %A A322286 _Sébastien Palcoux_, Aug 28 2019