This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322291 #35 Jun 04 2023 08:40:56 %S A322291 1,2,3,3,6,7,6,10,14,15,10,20,25,30,31,20,35,50,56,62,63,35,70,91,112, %T A322291 119,126,127,70,126,182,210,238,246,254,255,126,252,336,420,456,492, %U A322291 501,510,511,252,462,672,792,912,957,1002,1012,1022,1023,462,924,1254,1584,1749,1914,1969,2024,2035,2046,2047 %N A322291 Triangle T read by rows: T(n, k) = Sum_{i=1..k} binomial(n, floor((n-k)/2)+i). %C A322291 T(n, k) is a sharp upper bound on the cardinality of a k-antichain in {0, 1}^n due to P. Erdős. %C A322291 T(n, k) is also the total number of compositions with first part k, n+1 parts, and all differences between adjacent parts in {-1,1}. - _John Tyler Rascoe_, May 07 2023 %H A322291 John Tyler Rascoe, <a href="/A322291/b322291.txt">Rows n = 1..141 of the triangle, flattened</a> %H A322291 P. Erdős, <a href="https://doi.org/10.1090/S0002-9904-1945-08454-7">On a lemma of Littlewood and Offord</a>, Bull. Amer. Math. Soc., 51 (1945), 898-902. %H A322291 C. Pelekis and V. Vlasák, <a href="https://arxiv.org/abs/1908.04727">On k-antichains in the unit n-cube</a>, arXiv:1908.04727 [math.CA], 2019. %F A322291 T(n, n) = A000225(n). %F A322291 T(n, n-1) = A000918(n). %F A322291 T(n, n-2) = A000247(n). %F A322291 T(n, n-3) = A052515(n). %F A322291 T(n, n-4) = A272352(n+1). %F A322291 T(n, n-5) = A052516(n). %e A322291 n\k| 1 2 3 4 5 6 %e A322291 ---+----------------------------- %e A322291 1 | 1 %e A322291 2 | 2 3 %e A322291 3 | 3 6 7 %e A322291 4 | 6 10 14 15 %e A322291 5 | 10 20 25 30 31 %e A322291 6 | 20 35 50 56 62 63 %e A322291 ... %p A322291 a:=(n, k)->sum(binomial(n, floor((1/2)*n-(1/2)*k)+i), i = 1..k): seq(seq(a(n, k), k = 1..n), n = 1..11); %t A322291 T[n_,k_]:=Sum[Binomial[n,Floor[(n-k)/2]+i],{i,1,k}]; Table[T[n,k],{n,1,11},{k,1,n}] %o A322291 (GAP) Flat(List([1..11], n->List([1..n], k->Sum([1..k], i->Binomial(n, Int((n-k)/2)+i))))); %o A322291 (PARI) T(n, k) = sum(i=1, k, binomial(n, floor((n-k)/2)+i)); %Y A322291 Cf. A000225 (diagonal), A189390 (row sums). %Y A322291 Cf. A000247, A000918, A001405, A006126, A007318, A052515, A052516, A263857, A272352, A306550. %K A322291 nonn,tabl %O A322291 1,2 %A A322291 _Stefano Spezia_, Aug 28 2019