This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322307 #5 Dec 03 2018 21:38:28 %S A322307 0,1,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,2,1,2,2,2,1,2,1,2,1,2,1,3,1,1,2,2, %T A322307 2,2,1,2,2,2,1,3,1,2,2,2,1,2,1,2,2,2,1,2,2,2,2,2,1,3,1,2,2,1,2,3,1,2, %U A322307 2,3,1,2,1,2,2,2,2,3,1,2,1,2,1,3,2,2,2 %N A322307 Number of multisets in the swell of the n-th multiset multisystem. %C A322307 First differs from A001221 at a(91) = 3, A001221(91) = 2. %C A322307 The swell of a multiset partition is the set of possible joins of its connected submultisets, where the multiplicity of a vertex in the join of a set of multisets is the maximum multiplicity of the same vertex among the parts. For example the swell of {{1,1},{1,2},{2,2}} is: %C A322307 {1,1} %C A322307 {1,2} %C A322307 {2,2} %C A322307 {1,1,2} %C A322307 {1,2,2} %C A322307 {1,1,2,2} %t A322307 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A322307 zwell[y_]:=Union[y,Join@@Cases[Subsets[Union[y],{2}],{x_,z_}?(GCD@@#>1&):>zwell[Sort[Append[Fold[DeleteCases[#1,#2,{1},1]&,y,{x,z}],LCM[x,z]]]]]]; %t A322307 Table[Length[zwell[primeMS[n]]],{n,100}] %Y A322307 Cf. A003963, A054921, A056239, A112798, A218970, A286518, A290103, A301957, A302242, A304716, A305078, A305079, A316556, A322306. %K A322307 nonn %O A322307 1,6 %A A322307 _Gus Wiseman_, Dec 03 2018