This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322337 #6 Dec 05 2018 07:58:19 %S A322337 0,0,0,0,0,1,0,1,1,2,0,4,0,4,3,5,0,9,0,10,5,11,1,18,3,17,8,22,3,35,5, %T A322337 32,17,39,16,59,14,58,33,75,28,103,35,106,71,125,63,174,81,192,127, %U A322337 220,130,294,170,325,237,378,257,504 %N A322337 Number of strict 2-edge-connected integer partitions of n. %C A322337 An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part. %H A322337 Wikipedia, <a href="https://en.wikipedia.org/wiki/K-edge-connected_graph">k-edge-connected graph</a> %e A322337 The a(24) = 18 strict 2-edge-connected integer partitions of 24: %e A322337 (15,9) (10,8,6) (10,8,4,2) %e A322337 (16,8) (12,8,4) (12,6,4,2) %e A322337 (18,6) (12,9,3) %e A322337 (20,4) (14,6,4) %e A322337 (21,3) (14,8,2) %e A322337 (22,2) (15,6,3) %e A322337 (14,10) (16,6,2) %e A322337 (18,4,2) %e A322337 (12,10,2) %t A322337 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A322337 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A322337 twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]]; %t A322337 Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,twoedQ[primeMS/@#]]&]],{n,30}] %Y A322337 Cf. A007718, A013922, A054921, A095983, A218970, A275307, A286518, A304714, A304716, A305078, A305079, A322335, A322336. %K A322337 nonn %O A322337 1,10 %A A322337 _Gus Wiseman_, Dec 04 2018