This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322345 #40 Oct 02 2023 16:51:25 %S A322345 4,6,6,6,8,7,8,9,8,8,10,9,9,10,10,10,10,11,10,12,12,12,11,11,12,12,12, %T A322345 13,12,12,13,13,13,13,14,14,13,13,14,14,14,14,14,14,14,15,14,15,15,15, %U A322345 15,15,16,15,16,15,16,16,15,15,16,16,16,16,16,16,16,16,17,17,16,17,17,16,17,17 %N A322345 Maximal number of vertices of a convex lattice polygon containing n lattice points in its interior. %C A322345 This is an inverse of A063984 in the following sense: A063984(k) = min {n : a(n)>=k}. Thus a(n) grows roughly like const*n^(1/3). - _Günter Rote_, Sep 19 2023 %H A322345 Günter Rote, <a href="/A322345/b322345.txt">Table of n, a(n) for n = 0..200</a> %H A322345 Wouter Castryck, <a href="https://doi.org/10.1007/s00454-011-9376-2">Moving Out the Edges of a Lattice Polygon</a>, Discrete Comput. Geom., 47 (2012), p. 496-518, Column n_max in Table 1, p 512. %H A322345 Wouter Castryck, <a href="https://homes.esat.kuleuven.be/~wcastryc/# :~:text=Moving%20out%20the%20edges%20of%20a%20lattice%20polygon">Homepage</a>. See the accompanying files for the above-referenced paper. %H A322345 Günter Rote, <a href="/A322345/a322345.py.txt">Python program</a> for this sequence and for A298562, (2023). %H A322345 Günter Rote, <a href="/A322345/a322345.txt">Table of n, a(n) for n = 0..200</a> together with a corresponding a(n)-gon for each n, (2023). %o A322345 (Python) # See the Python program in the links section. %Y A322345 Cf. A063984, A187015, A322343, A322346, A298562, A298755. %K A322345 nonn %O A322345 0,1 %A A322345 _Hugo Pfoertner_, Dec 04 2018 %E A322345 a(0) added by _Andrey Zabolotskiy_, Dec 29 2021 %E A322345 Name clarified by _Günter Rote_, Sep 18 2023 %E A322345 a(31) onwards from _Günter Rote_, Oct 01 2023