This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322353 #20 Jan 05 2021 21:34:43 %S A322353 1,0,0,1,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,0,1,1,0,1,1,1,0,0,0,0,0,0,1,1, %T A322353 1,1,0,1,1,1,0,0,0,0,0,1,0,0,1,0,1,0,0,1,1,1,1,1,0,2,0,1,0,0,1,0,0,0, %U A322353 1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,2,1,1,1,1,0,2,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0 %N A322353 Number of factorizations of n into distinct semiprimes; a(1) = 1 by convention. %C A322353 A semiprime (A001358) is a product of any two prime numbers. In the even case, these factorizations have A001222(n)/2 factors. - _Gus Wiseman_, Dec 31 2020 %C A322353 Records 1, 2, 3, 4, 5, 9, 13, 15, 17, ... occur at 1, 60, 210, 840, 1260, 4620, 27720, 30030, 69300, ... %H A322353 Antti Karttunen, <a href="/A322353/b322353.txt">Table of n, a(n) for n = 1..100000</a> %H A322353 Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a> %H A322353 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A322353 a(n) = Sum_{d|n} (-1)^A001222(d) * A339839(n/d). - _Gus Wiseman_, Dec 31 2020 %e A322353 a(4) = 1, as there is just one way to factor 4 into distinct semiprimes, namely as {4}. %e A322353 From _Gus Wiseman_, Dec 31 2020: (Start) %e A322353 The a(n) factorizations for n = 60, 210, 840, 1260, 4620, 12600, 18480: %e A322353 4*15 6*35 4*6*35 4*9*35 4*15*77 4*6*15*35 4*6*10*77 %e A322353 6*10 10*21 4*10*21 4*15*21 4*21*55 4*6*21*25 4*6*14*55 %e A322353 14*15 4*14*15 6*10*21 4*33*35 4*9*10*35 4*6*22*35 %e A322353 6*10*14 6*14*15 6*10*77 4*9*14*25 4*10*14*33 %e A322353 9*10*14 6*14*55 4*10*15*21 4*10*21*22 %e A322353 6*22*35 6*10*14*15 4*14*15*22 %e A322353 10*14*33 6*10*14*22 %e A322353 10*21*22 %e A322353 14*15*22 %e A322353 (End) %t A322353 Table[Count[Subsets[Select[Divisors[n], PrimeOmega[#] == 2 &]], _?(Times @@ # == n &)], {n, 105}] (* _Michael De Vlieger_, Dec 11 2020 *) %o A322353 (PARI) A322353(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A322353(n/d, d-1))); (s)); \\ _Antti Karttunen_, Dec 10 2020 %Y A322353 Unlabeled multiset partitions of this type are counted by A007717. %Y A322353 The version for partitions is A112020, or A101048 without distinctness. %Y A322353 The non-strict version is A320655. %Y A322353 Positions of zeros include A320892. %Y A322353 Positions of nonzero terms are A320912. %Y A322353 The case of squarefree factors is A339661, or A320656 without distinctness. %Y A322353 Allowing prime factors gives A339839, or A320732 without distinctness. %Y A322353 A322661 counts loop-graphs, ranked by A320461. %Y A322353 A001055 counts factorizations, with strict case A045778. %Y A322353 A001358 lists semiprimes, with squarefree case A006881. %Y A322353 A027187 counts partitions of even length, ranked by A028260. %Y A322353 A037143 lists primes and semiprimes. %Y A322353 A338898/A338912/A338913 give the prime indices of semiprimes. %Y A322353 A339846 counts even-length factorizations, with ordered version A174725. %Y A322353 Cf. A001221, A006125, A006129, A028260, A320893, A338915, A339841. %K A322353 nonn %O A322353 1,60 %A A322353 _Antti Karttunen_, Dec 06 2018