cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322364 Numerator of the sum of inverse products of parts in all partitions of n.

This page as a plain text file.
%I A322364 #26 Apr 29 2020 07:44:31
%S A322364 1,1,3,11,7,27,581,4583,2327,69761,775643,147941,30601201,30679433,
%T A322364 10928023,6516099439,445868889691,298288331489,7327135996801,
%U A322364 1029216937671847,14361631943741,837902013393451,2766939485246012129,274082602410356881,835547516381094139939
%N A322364 Numerator of the sum of inverse products of parts in all partitions of n.
%H A322364 Alois P. Heinz, <a href="/A322364/b322364.txt">Table of n, a(n) for n = 0..505</a>
%H A322364 A. Knopfmacher, J. N. Ridley, <a href="http://dx.doi.org/10.1137/0406031">Reciprocal sums over partitions and compositions</a>, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
%H A322364 D. H. Lehmer, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa21/aa21123.pdf">On reciprocally weighted partitions</a>, Acta Arithmetica XXI (1972), 379-388.
%H A322364 D. Zeilberger, N. Zeilberger, <a href="http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/fcp.html">Fractional Counting of Integer Partitions</a>, 2018.
%F A322364 Limit_{n-> infinity} a(n)/(n*A322365(n)) = exp(-gamma) = A080130.
%e A322364 1/1, 1/1, 3/2, 11/6, 7/3, 27/10, 581/180, 4583/1260, 2327/560, 69761/15120, 775643/151200, 147941/26400, 30601201/4989600, 30679433/4633200 ... = A322364/A322365
%p A322364 b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
%p A322364       b(n, i-1) +b(n-i, min(i, n-i))/i)
%p A322364     end:
%p A322364 a:= n-> numer(b(n$2)):
%p A322364 seq(a(n), n=0..30);
%t A322364 b[n_, i_] := b[n, i] = If[n==0||i==1, 1, b[n, i-1] + b[n-i, Min[i, n-i]]/i];
%t A322364 a[n_] := Numerator[b[n, n]];
%t A322364 a /@ Range[0, 30] (* _Jean-François Alcover_, Apr 29 2020, after _Alois P. Heinz_ *)
%o A322364 (PARI) a(n) = {my(s=0); forpart(p=n, s += 1/vecprod(Vec(p))); numerator(s);} \\ _Michel Marcus_, Apr 29 2020
%Y A322364 Denominators: A322365.
%Y A322364 Cf. A000041, A006906, A080130, A177208, A177209, A322380, A322381, A323290, A323291, A323339, A323340.
%K A322364 nonn,frac
%O A322364 0,3
%A A322364 _Alois P. Heinz_, Dec 04 2018