This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322367 #5 Dec 05 2018 07:58:34 %S A322367 1,0,1,2,3,6,7,14,17,27,34,54,63,98,118,165,207,287,345,474,574,757, %T A322367 931,1212,1463,1890,2292,2898,3515,4413,5303 %N A322367 Number of disconnected or empty integer partitions of n. %C A322367 An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1). %e A322367 The a(3) = 2 through a(9) = 27 disconnected integer partitions: %e A322367 (21) (31) (32) (51) (43) (53) (54) %e A322367 (111) (211) (41) (321) (52) (71) (72) %e A322367 (1111) (221) (411) (61) (332) (81) %e A322367 (311) (2211) (322) (431) (432) %e A322367 (2111) (3111) (331) (521) (441) %e A322367 (11111) (21111) (421) (611) (522) %e A322367 (111111) (511) (3221) (531) %e A322367 (2221) (3311) (621) %e A322367 (3211) (4211) (711) %e A322367 (4111) (5111) (3222) %e A322367 (22111) (22211) (3321) %e A322367 (31111) (32111) (4221) %e A322367 (211111) (41111) (4311) %e A322367 (1111111) (221111) (5211) %e A322367 (311111) (6111) %e A322367 (2111111) (22221) %e A322367 (11111111) (32211) %e A322367 (33111) %e A322367 (42111) %e A322367 (51111) %e A322367 (222111) %e A322367 (321111) %e A322367 (411111) %e A322367 (2211111) %e A322367 (3111111) %e A322367 (21111111) %e A322367 (111111111) %t A322367 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A322367 Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]!=1&]],{n,20}] %Y A322367 Cf. A054921, A218970, A286518, A322335, A304714, A304716, A305078, A305079, A322306, A322307, A322337, A322338, A322368, A322369. %K A322367 nonn,more %O A322367 0,4 %A A322367 _Gus Wiseman_, Dec 04 2018