cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322369 Number of strict disconnected or empty integer partitions of n.

This page as a plain text file.
%I A322369 #4 Dec 05 2018 07:58:48
%S A322369 1,0,0,1,1,2,2,4,4,6,7,10,10,16,17,22,26,33,36,48,52,64,76,90,101,125,
%T A322369 142,166,192,225,250,302,339,393,451,515,581,675,762,866,985,1122,
%U A322369 1255,1441,1612,1823,2059,2318,2591,2930,3275,3668,4118,4605,5125,5749
%N A322369 Number of strict disconnected or empty integer partitions of n.
%C A322369 An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).
%e A322369 The a(3) = 1 through a(11) = 10 strict disconnected integer partitions:
%e A322369   (2,1)  (3,1)  (3,2)  (5,1)    (4,3)    (5,3)    (5,4)    (7,3)      (6,5)
%e A322369                 (4,1)  (3,2,1)  (5,2)    (7,1)    (7,2)    (9,1)      (7,4)
%e A322369                                 (6,1)    (4,3,1)  (8,1)    (5,3,2)    (8,3)
%e A322369                                 (4,2,1)  (5,2,1)  (4,3,2)  (5,4,1)    (9,2)
%e A322369                                                   (5,3,1)  (6,3,1)    (10,1)
%e A322369                                                   (6,2,1)  (7,2,1)    (5,4,2)
%e A322369                                                            (4,3,2,1)  (6,4,1)
%e A322369                                                                       (7,3,1)
%e A322369                                                                       (8,2,1)
%e A322369                                                                       (5,3,2,1)
%t A322369 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t A322369 Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,Length[zsm[#]]!=1]&]],{n,30}]
%Y A322369 Cf. A054921, A218970, A286518, A304714, A304716, A305078, A305079, A322306, A322307, A322335, A322337, A322338, A322367, A322368.
%K A322369 nonn
%O A322369 0,6
%A A322369 _Gus Wiseman_, Dec 04 2018