cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322379 Triangle T(s,d) read by rows: the number of 2-connected labeled cubic graphs with s simple edges and d double edges.

This page as a plain text file.
%I A322379 #14 Feb 12 2021 12:11:54
%S A322379 0,0,0,0,0,6,0,0,0,120,0,0,0,0,5040,0,0,180,0,0,362880,1,0,0,23520,0,
%T A322379 0,39916800,0,180,0,0,3628800,0,0,6227020800,0,0,45360,0,0,718502400,
%U A322379 0,0,1307674368000,70,0,0,13003200,0,0,181621440000,0,0,355687428096000,0,45360,0,0,4340952000,0,0,57537672192000,0,0
%N A322379 Triangle T(s,d) read by rows: the number of 2-connected labeled cubic graphs with s simple edges and d double edges.
%H A322379 G.-B. Chae, E. M. Palmer, R. W. Robinson, <a href="https://doi.org/10.1016/j.disc.2007.03.011">Counting labeled cubic graphs</a>, Disc. Math. 307 (2007) 2979-2992, g(s,d).
%F A322379 T(3s,0) = A007099(s).
%e A322379 The triangle starts
%e A322379   0;
%e A322379   0, 0;
%e A322379   0, 0,  6;
%e A322379   0, 0,  0,   120;
%e A322379   0, 0,  0,     0, 5040;
%e A322379   0, 0,180,     0,    0, 362880;
%e A322379   1, 0,  0, 23520,    0,      0, 39916800;
%p A322379 # expand g(s,d) of eq (21) of Chae et al.
%p A322379 g2x := 6*x^5/4! ;
%p A322379 for itr from 1 to 16 do
%p A322379     g2xx := expand(diff(g2x,x)) ;
%p A322379     g2x := (x^5-x^8)*g2x*g2xx+(x^4-2*x^7+x^10+x^5*y-x^8*y)/2*g2xx
%p A322379         +(2*x^4+x^7)*g2x^2
%p A322379         +(8*x^3-6*x^6-x^9+x^12+2*x*y-2*x^4*y+8*x^7*y-2*x^10*y)/2*g2x
%p A322379         + x^5/4 -3*x^8/4 +3*x^11/4-x^14/4 +3*x^6*y/2-9*x^9*y/4+3*x^12*y/4+x*y^2/2
%p A322379         -x^4*y^2+7*x^7*y^2/4-x^10*y^2/2 ;
%p A322379     g2x := expand(%) ;
%p A322379     g2x := taylor(g2x,x=0,itr+5) ;
%p A322379     g2x := convert(g2x,polynom) ;
%p A322379     g2 := expand(int(g2x,x)) ;
%p A322379     for s from 0 to itr+1 do
%p A322379         g := coeftayl(g2,x=0,s) ;
%p A322379         for d from 0 to s do
%p A322379             twon := (2*s+4*d)/3 ;
%p A322379             coeftayl(g,y=0,d) ;
%p A322379             printf("%a,",%*twon!) ;
%p A322379         end do:
%p A322379         printf("\n") ;
%p A322379     end do:
%p A322379 end do:
%Y A322379 Cf. A009445 (diagonal), A007099 (left column).
%K A322379 nonn,tabl
%O A322379 0,6
%A A322379 _R. J. Mathar_, Dec 05 2018