cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322380 Numerator of the sum of inverse products of parts in all strict partitions of n.

This page as a plain text file.
%I A322380 #41 Feb 24 2022 18:22:36
%S A322380 1,1,1,5,7,37,79,173,101,127,1033,1571,200069,2564519,5126711,
%T A322380 25661369,532393,431100529,1855391,1533985991,48977868113,
%U A322380 342880481117,342289639579,435979161889,1308720597671,373092965489,7824703695283,24141028973,31250466692609
%N A322380 Numerator of the sum of inverse products of parts in all strict partitions of n.
%C A322380 a(n)/A322381(n) = A007838(n)/A000142(n) is the probability that a random permutation of [n] has distinct cycle sizes. - _Geoffrey Critzer_, Feb 23 2022
%H A322380 Alois P. Heinz, <a href="/A322380/b322380.txt">Table of n, a(n) for n = 0..1268</a>
%H A322380 Andreas B. G. Blobel, <a href="https://arxiv.org/abs/1904.07808">An Asymptotic Form of the Generating Function Prod_{k=1,oo} (1+x^k/k)</a>, arXiv:1904.07808 [math.CO], 2019.
%H A322380 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 137.
%H A322380 A. Knopfmacher and J. N. Ridley, <a href="http://dx.doi.org/10.1137/0406031">Reciprocal sums over partitions and compositions</a>, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
%H A322380 D. H. Lehmer, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa21/aa21123.pdf">On reciprocally weighted partitions</a>, Acta Arithmetica XXI (1972), 379-388.
%H A322380 D. Zeilberger, N. Zeilberger, <a href="http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/fcp.html">Fractional Counting of Integer Partitions</a>, 2018.
%F A322380 Limit_{n->infinity} a(n)/A322381(n) = exp(-gamma) = A080130.
%F A322380 Sum_{n>=0} a(n)/A322381(n)*x^n = Product_{i>=1} (1 + x^i/i). - _Geoffrey Critzer_, Feb 23 2022
%e A322380 1/1, 1/1, 1/2, 5/6, 7/12, 37/60, 79/120, 173/280, 101/168, 127/210, 1033/1680, 1571/2640, 200069/332640, 2564519/4324320, 5126711/8648640, ... = A322380/A322381
%p A322380 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A322380       b(n, i-1) +b(n-i, min(i-1, n-i))/i))
%p A322380     end:
%p A322380 a:= n-> numer(b(n$2)):
%p A322380 seq(a(n), n=0..30);
%t A322380 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
%t A322380 a[n_] := Numerator[b[n, n]];
%t A322380 a /@ Range[0, 30] (* _Jean-François Alcover_, Feb 25 2020, after _Alois P. Heinz_ *)
%Y A322380 Denominators: A322381.
%Y A322380 Cf. A000009, A000142, A007838, A022629, A080130, A177208, A177209, A322364, A322365, A323290, A323291, A323339, A323340.
%K A322380 nonn,frac
%O A322380 0,4
%A A322380 _Alois P. Heinz_, Dec 05 2018