A322390 Number of integer partitions of n with vertex-connectivity 1.
0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 8, 1, 7, 3, 11, 1, 14, 2, 18, 7, 21, 6, 35, 14, 43, 28, 65, 42, 96, 70, 141, 120, 205, 187, 315, 286, 445, 445, 657
Offset: 1
Examples
The a(14) = 7 integer partitions are (842), (8222), (77), (4442), (44222), (422222), (2222222). The a(18) = 14 integer partitions: (9,9), (16,2), (8,8,2), (10,6,2), (8,4,4,2), (9,3,3,3), (4,4,4,4,2), (8,4,2,2,2), (3,3,3,3,3,3), (4,4,4,2,2,2), (8,2,2,2,2,2), (4,4,2,2,2,2,2), (4,2,2,2,2,2,2,2), (2,2,2,2,2,2,2,2,2).
Links
- Wikipedia, k-vertex-connected graph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]]; Table[Length[Select[IntegerPartitions[n],vertConn[#]==1&]],{n,20}]
Comments