cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322391 Number of integer partitions of n with edge-connectivity 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 9, 3, 14, 8, 17, 13, 35, 17, 49, 35, 67, 53, 114, 69
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

The edge-connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The a(20) = 8 integer partitions:
  (20),
  (12,3,3,2), (9,6,3,2), (8,6,3,3),
  (6,4,4,3,3),
  (6,4,3,3,2,2), (6,3,3,3,3,2),
  (6,3,3,2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]];
    Table[Length[Select[IntegerPartitions[n],edgeConn[#]==1&]],{n,20}]