A322391 Number of integer partitions of n with edge-connectivity 1.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 9, 3, 14, 8, 17, 13, 35, 17, 49, 35, 67, 53, 114, 69
Offset: 1
Examples
The a(20) = 8 integer partitions: (20), (12,3,3,2), (9,6,3,2), (8,6,3,3), (6,4,4,3,3), (6,4,3,3,2,2), (6,3,3,3,3,2), (6,3,3,2,2,2,2).
Links
- Wikipedia, k-edge-connected graph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; edgeConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]]; Table[Length[Select[IntegerPartitions[n],edgeConn[#]==1&]],{n,20}]
Comments