A322392 Array A read by antidiagonals: A(n,k) = n-th digit of the base k expansion of 1/n.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 4, 2, 5, 1, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5, 3, 2, 1, 1, 0, 3, 3, 0, 0, 0, 0, 1, 0, 1, 3, 0, 0, 2, 1, 0, 3, 0, 0, 0, 6, 0, 8, 0, 4, 1, 6, 0
Offset: 1
Examples
A(10,9) = 8, as the 10th digit of the base 9 expansion of 1/10 = 0.0808080808080808080808080808... is 8. Array A(n, k) begins: n\k 1 2 3 4 5 6 7 8 9 10 1 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 2 0 3 0 4 0 3 0 0 0 1 1 0 2 2 0 3 4 0 0 2 0 1 0 5 0 2 0 5 0 0 0 0 0 1 1 1 1 0 6 0 0 1 2 4 0 1 2 4 6 7 0 0 0 0 0 0 0 1 1 1 8 0 0 1 0 3 0 6 0 1 0 9 0 0 0 3 3 0 3 0 0 1 10 0 0 0 1 2 3 4 6 8 0
Programs
-
Mathematica
a = {}; l = 100; x = Table[ Join[Range[2n - 1], Reverse@ Range[2n - 2]], {n, l}] // Flatten; y = Table[ Join[Range[2m], Reverse@Range[2m - 1]], {m, l-1}] // Flatten; Do[a = Append[a, Mod[ Floor[1/Part[x, i] * Part[y,i]^Part[x, i]], Part[y,i]] ], {i, 1, l} ]; a