This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322398 #14 Jul 01 2023 16:03:28 %S A322398 1,1,1,2,4,3,1,5,15,21,18,10,4,1,14,56,112,148,143,109,68,35,15,5,1, %T A322398 42,210,540,945,1255,1353,1236,984,696,441,250,126,56,21,6,1,132,792, %U A322398 2475,5335,8866,12112,14182,14654,13646,11619,9131,6662,4529,2870,1691,922,462,210,84,28,7,1,429,3003 %N A322398 Triangle of the coefficients of Touchard's chord enumerating polynomials, [x^k] S(n,x), 0 <= k <= n*(n-1)/2. %H A322398 Jean-François Alcover, <a href="/A322398/b322398.txt">Table of n, a(n) for n = 1..1350 (20 rows)</a> %H A322398 J. Touchard, <a href="http://dx.doi.org/10.4153/CJM-1952-001-8">Sur un problème de configurations et sur les fractions continues</a>, Canad. J. Math., 4 (1952), 2-25, S_n(x). %e A322398 The triangle starts: %e A322398 1; %e A322398 1, 1; %e A322398 2, 4, 3, 1; %e A322398 5, 15, 21, 18, 10, 4, 1; %e A322398 14, 56, 112, 148, 143, 109, 68, 35, 15, 5, 1; %e A322398 ... %p A322398 # page 3 prior to equation 2 %p A322398 Dpq := proc(p,q) %p A322398 (p-q+1)*binomial(p+q,q)/(p+1) ; %p A322398 end proc: %p A322398 # page 12 top %p A322398 fp1 := proc(p,x) %p A322398 add( (-1)^i*Dpq(2*p-i,i)*x^((p+1-i)*(p-i)/2),i=0..p) ; %p A322398 end proc: %p A322398 # page 12 %p A322398 gnx := proc(n,x) %p A322398 fp1(n,x)/(x-1)^n ; %p A322398 taylor(%,x=0,1+n*(n+1)/2) ; %p A322398 convert(%,polynom) ; %p A322398 end proc: %p A322398 Snx := proc(n,x) %p A322398 if n =0 then %p A322398 0; %p A322398 elif n =1 then %p A322398 1; %p A322398 else %p A322398 # recurrence page 17 %p A322398 gnx(n,x)-add( gnx(n-i,x)*procname(i,x),i=1..n-1) ; %p A322398 taylor(%,x=1,1+n*(n+1)/2) ; %p A322398 convert(%,polynom) ; %p A322398 expand(%) ; %p A322398 end if; %p A322398 end proc: %p A322398 for n from 1 to 8 do %p A322398 S := Snx(n,x) ; %p A322398 seq( coeff(S,x,i),i=0..n*(n-1)/2) ; %p A322398 printf("\n") ; %p A322398 end do: %t A322398 Dpq[p_, q_] := (p - q + 1)*Binomial[p + q, q]/(p + 1); %t A322398 fp1[p_, x_] := Sum[(-1)^i*Dpq[2*p - i, i]*x^((p + 1 - i)*(p - i)/2), {i, 0, p}]; %t A322398 gnx[n_, x_] := fp1[n, x]/(x - 1)^n // Series[#, {x, 0, 1 + n*(n + 1)/2}]& // Normal; %t A322398 Snx[n_, x_] := Snx[n, x] = Which[n == 0, 0, n == 1, 1, True, gnx[n, x] - Sum[gnx[n - i, x]*Snx[i, x], {i, 1, n - 1}] // Series[#, {x, 1, 1 + n*(n + 1)/2}]& // Normal]; %t A322398 Table[CoefficientList[Snx[n, x], x], {n, 1, 8}] // Flatten (* _Jean-François Alcover_, Jul 01 2023, after _R. J. Mathar_ *) %Y A322398 Cf. A000108 (leading column), A001791 (2nd column), A000698 (row sums). %K A322398 nonn,tabf %O A322398 1,4 %A A322398 _R. J. Mathar_, Dec 06 2018