A322401 Number of strict integer partitions of n with edge-connectivity 1.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 5, 1, 6, 2, 7, 2, 13, 3, 14, 6, 18, 8, 28, 11, 33, 19, 38, 22, 54, 28, 71, 44, 83, 53, 110, 68, 134, 98, 154, 120, 209, 145, 253, 191, 302, 244, 385, 299, 459, 390, 553, 483, 693, 578
Offset: 0
Keywords
Examples
The a(30) = 11 strict integer partitions with edge-connectivity 1: (30), (10,9,6,5), (12,10,5,3), (14,7,6,3), (15,6,5,4), (15,10,3,2), (9,8,6,4,3), (10,9,6,3,2), (12,9,4,3,2), (15,6,4,3,2), (10,6,5,4,3,2).
Links
- Wikipedia, k-edge-connected graph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; edgeConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]]; Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&edgeConn[#]==1&]],{n,30}]
Comments