cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322403 Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: the lengths of runs in binary expansion of T(n, k) are obtained by multiplying those of n and of k (see Comments for precise definition).

This page as a plain text file.
%I A322403 #21 Jun 09 2025 14:40:34
%S A322403 0,0,0,0,1,0,0,2,2,0,0,3,2,3,0,0,4,12,12,4,0,0,5,4,15,4,5,0,0,6,42,48,
%T A322403 48,42,6,0,0,7,6,51,16,51,6,7,0,0,8,56,60,292,292,60,56,8,0,0,9,8,63,
%U A322403 12,5,12,63,8,9,0,0,10,150,192,448,438,438,448,192
%N A322403 Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: the lengths of runs in binary expansion of T(n, k) are obtained by multiplying those of n and of k (see Comments for precise definition).
%C A322403 For any n >= 0 and k >= 0:
%C A322403 - let r_n be the lengths of runs in binary expansion of n,
%C A322403 - for n = 0: we assume that r_0 = (),
%C A322403 - when n > 0: let R_n be the #r_n-periodic sequence whose first #r_n terms match r_n,
%C A322403 - r_{T(n, k)} has lcm(#r_n, #r_k) terms and r_{T(n, k)}(i) = R_n(i) * R_k(i) for i = 1..lcm(#r_n, #r_k).
%H A322403 <a href="http://oeis.org/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A322403 For any m >= 0, n >= 0 and k >= 0:
%F A322403 - T(n, k) = T(k, n) (T is commutative),
%F A322403 - T(m, T(n, k)) = T(T(m, n), k) (T is associative),
%F A322403 - T(m, A322404(n, k)) = A322404(T(m, n), T(m, k)) (T distributes over A322404),
%F A322403 - T(n, 0) = 0 (0 is an absorbing element for T),
%F A322403 - T(n, 1) = n (1 is an neutral element for T),
%F A322403 - T(n, 3) = A001196(n),
%F A322403 - T(n, 7) = A097254(n+1),
%F A322403 - T(n, 15) = A097262(n),
%F A322403 - T(n, n) = A322149(n),
%F A322403 - A005811(T(n, k)) = lcm(A005811(n), A005811(k)),
%F A322403 - T(2^n - 1, 2^k - 1) = 2^(n*k) - 1.
%F A322403 - T(2^n, 2^k) = 2^(n*k) when n > 0 and k > 0,
%F A322403 - T(n, k) is odd iff both n and k are odd.
%e A322403 Array T(n, k) begins (in decimal):
%e A322403   n\k|  0  1   2    3    4     5    6     7     8     9     10
%e A322403   ---+--------------------------------------------------------
%e A322403     0|  0  0   0    0    0     0    0     0     0      0     0
%e A322403     1|  0  1   2    3    4     5    6     7     8      9    10
%e A322403     2|  0  2   2   12    4    42    6    56     8    150    10
%e A322403     3|  0  3  12   15   48    51   60    63   192    195   204
%e A322403     4|  0  4   4   48   16   292   12   448    64   2124    36
%e A322403     5|  0  5  42   51  292     5  438   455  2184      9  2730
%e A322403     6|  0  6   6   60   12   438   30   504    24   3294    54
%e A322403     7|  0  7  56   63  448   455  504   511  3584   3591  3640
%e A322403     8|  0  8   8  192   64  2184   24  3584   512  33048   136
%e A322403 Array T(n, k) begins (in binary):
%e A322403    n\k|  0     1      10        11        100          101         110
%e A322403   ----+---------------------------------------------------------------
%e A322403      0|  0     0       0         0          0             0          0
%e A322403      1|  0     1      10        11        100           101        110
%e A322403     10|  0    10      10      1100        100        101010        110
%e A322403     11|  0    11    1100      1111     110000        110011     111100
%e A322403    100|  0   100     100    110000      10000     100100100       1100
%e A322403    101|  0   101  101010    110011  100100100           101  110110110
%e A322403    110|  0   110     110    111100       1100     110110110      11110
%e A322403    111|  0   111  111000    111111  111000000     111000111  111111000
%e A322403   1000|  0  1000    1000  11000000    1000000  100010001000      11000
%o A322403 (PARI) T(n,k) = my (v=0, p=1, rn=n, rk=k, b=if ((max(n,1)%2)&&(max(k,1)%2), 1, 0)); while (1, my (vn=if (rn==0, 0, valuation(rn+(rn%2), 2)), vk=if(rk==0, 0, valuation(rk+(rk%2), 2)), w=vn*vk); v+=b*p*(2^w-1); rn\=2^vn; rk\=2^vk; if (rn==0 && rk==0, return (v), rn==0, rn=n, rk==0, rk=k); p*=2^w; b=1-b)
%Y A322403 See A322404 for the additive variant.
%Y A322403 Cf. A001196, A097254, A097262, A322149.
%K A322403 nonn,base,tabl
%O A322403 0,8
%A A322403 _Rémy Sigrist_, Dec 06 2018