cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322404 Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: the lengths of runs in binary expansion of T(n, k) are obtained by adding those of n and of k (see Comments for precise definition).

This page as a plain text file.
%I A322404 #17 Jun 26 2025 18:36:22
%S A322404 0,1,1,2,3,2,3,12,12,3,4,7,12,7,4,5,24,56,56,24,5,6,51,24,15,24,51,6,
%T A322404 7,28,3276,112,112,3276,28,7,8,15,28,455,48,455,28,15,8,9,48,240,120,
%U A322404 25368,25368,120,240,48,9,10,99,48,31,56,51,56,31,48,99,10
%N A322404 Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: the lengths of runs in binary expansion of T(n, k) are obtained by adding those of n and of k (see Comments for precise definition).
%C A322404 For any n >= 0 and k >= 0:
%C A322404 - let r_n be the lengths of runs in binary expansion of n,
%C A322404 - for n = 0: we assume that r_0 = (0),
%C A322404 - let R_n be the #r_n-periodic sequence whose first #r_n terms match r_n,
%C A322404 - r_{T(n, k)} has lcm(#r_n, #r_k) terms and r_{T(n, k)}(i) = R_n(i) + R_k(i) for i = 1..lcm(#r_n, #r_k).
%F A322404 For any m >= 0, n >= 0 and k >= 0:
%F A322404 - T(n, k) = T(k, n) (T is commutative),
%F A322404 - T(m, T(n, k)) = T(T(m, n), k) (T is associative),
%F A322404 - T(n, 0) = n (0 is a neutral element for T),
%F A322404 - T(n, 1) = A175046(n),
%F A322404 - T(n, n) = A001196(n),
%F A322404 - A005811(T(n, k)) = max(A005811(n), A005811(k), lcm(A005811(n), A005811(k))),
%F A322404 - T(2^n - 1, 2^k - 1) = 2^(n+k) - 1,
%F A322404 - T(2^n, 2^k) = 3 * 2^(n+k) when n > 0 and k > 0,
%F A322404 - T(n, k) is odd iff both n and k are odd.
%e A322404 Array T(n, k) begins (in decimal):
%e A322404   n\k|  0   1     2    3      4       5      6     7       8       9        10
%e A322404   ---+------------------------------------------------------------------------
%e A322404     0|  0   1     2    3      4       5      6     7       8       9        10
%e A322404     1|  1   3    12    7     24      51     28    15      48      99       204
%e A322404     2|  2  12    12   56     24    3276     28   240      48   12700       204
%e A322404     3|  3   7    56   15    112     455    120    31     224     903      3640
%e A322404     4|  4  24    24  112     48   25368     56   480      96   99896       792
%e A322404     5|  5  51  3276  455  25368      51  29596  3855  199728      99  13421772
%e A322404     6|  6  28    28  120     56   29596     60   496     112  116540       924
%e A322404     7|  7  15   240   31    480    3855    496    63     960    7695     61680
%e A322404     8|  8  48    48  224     96  199728    112   960     192  792688      3120
%e A322404 Array T(n, k) begins (in binary):
%e A322404    n\k|     0       1            10         11              100
%e A322404   ----+--------------------------------------------------------
%e A322404      0|     0       1            10         11              100
%e A322404      1|     1      11          1100        111            11000
%e A322404     10|    10    1100          1100     111000            11000
%e A322404     11|    11     111        111000       1111          1110000
%e A322404    100|   100   11000         11000    1110000           110000
%e A322404    101|   101  110011  110011001100  111000111  110001100011000
%e A322404    110|   110   11100         11100    1111000           111000
%e A322404    111|   111    1111      11110000      11111        111100000
%e A322404   1000|  1000  110000        110000   11100000          1100000
%o A322404 (PARI) T(n,k) = my (v=0, p=1, rn=n, rk=k, b=if ((max(n,1)%2)&&(max(k,1)%2), 1, 0)); while (1, my (vn=if (rn==0, 0, valuation(rn+(rn%2), 2)), vk=if(rk==0, 0, valuation(rk+(rk%2), 2)), w=vn+vk); v+=b*p*(2^w-1); rn\=2^vn; rk\=2^vk; if (rn==0 && rk==0, return (v), rn==0, rn=n, rk==0, rk=k); p*=2^w; b=1-b)
%Y A322404 See A322403 for the multiplicative variant.
%Y A322404 Cf. A001196, A005811, A175046.
%K A322404 nonn,base,tabl
%O A322404 0,4
%A A322404 _Rémy Sigrist_, Dec 06 2018