This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322428 #22 Aug 28 2020 16:46:00 %S A322428 1,3,1,8,3,1,19,8,4,1,43,20,11,5,1,94,48,27,16,6,1,202,110,64,42,22,7, %T A322428 1,428,245,149,100,64,29,8,1,899,533,341,228,163,93,37,9,1,1875,1142, %U A322428 765,512,383,256,130,46,10,1,3890,2420,1683,1144,859,638,386,176,56,11,1 %N A322428 Sum T(n,k) of k-th largest parts of all compositions of n; triangle T(n,k), n>=1, 1<=k<=n, read by rows. %H A322428 Alois P. Heinz, <a href="/A322428/b322428.txt">Rows n = 1..50, flattened</a> %e A322428 The 4 compositions of 3 are: 111, 12, 21, 3. The sums of k-th largest parts for k=1..3 give: 1+2+2+3 = 8, 1+1+1+0 = 3, 1+0+0+0 = 1. %e A322428 Triangle T(n,k) begins: %e A322428 1; %e A322428 3, 1; %e A322428 8, 3, 1; %e A322428 19, 8, 4, 1; %e A322428 43, 20, 11, 5, 1; %e A322428 94, 48, 27, 16, 6, 1; %e A322428 202, 110, 64, 42, 22, 7, 1; %e A322428 428, 245, 149, 100, 64, 29, 8, 1; %e A322428 899, 533, 341, 228, 163, 93, 37, 9, 1; %e A322428 1875, 1142, 765, 512, 383, 256, 130, 46, 10, 1; %e A322428 ... %p A322428 b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*x^i, %p A322428 i=1..nops(l)), add(b(n-j, sort([l[], j])), j=1..n)) %p A322428 end: %p A322428 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, [])): %p A322428 seq(T(n), n=1..12); %t A322428 b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]] x^i, {i, 1, Length[l]}], Sum[b[n - j, Sort[Append[l, j]]], {j, 1, n}]]; %t A322428 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n, {}]]; %t A322428 Array[T, 12] // Flatten (* _Jean-François Alcover_, Dec 29 2018, after _Alois P. Heinz_ *) %Y A322428 Column k=1 gives A102712. %Y A322428 Row sums give A001787. %Y A322428 T(n+1,1+ceiling(n/2)) gives A027306. %Y A322428 Cf. A322427. %K A322428 nonn,tabl %O A322428 1,2 %A A322428 _Alois P. Heinz_, Dec 07 2018