A322434 Numbers k that are the numerator of a harmonic number such that k is divisible by the square of a prime >= 5.
25, 49, 363, 7381, 86021, 2436559, 14274301, 19093197, 315404588903, 9227046511387, 9304682830147, 54801925434709, 2078178381193813, 12309312989335019, 5943339269060627227, 14063600165435720745359, 254381445831833111660789, 15117092380124150817026911
Offset: 1
Examples
49 is a term because the numerator of the harmonic number H_6 = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 = 49/20 is divisible by the square of 7 (by Wolstenholme's Theorem). 363 is a term because the numerator of the harmonic number H_7 = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 = 363/140 is divisible by the square of 11.
Links
- Hisanori Mishima, Wolstenholme Numbers, WIFC (World Integer Factorization Center).
Programs
-
Mathematica
Select[Numerator@ HarmonicNumber@ Range@ 60, AnyTrue[FactorInteger[#], And[First[#] > 2, Last[#] > 1] &] &] (* Michael De Vlieger, Dec 08 2018 *)
-
PARI
isok(nh) = {my(f = factor(nh)); for (i=1, #f~, if ((f[i, 1] >= 5) && (f[i, 2] >= 2), return (1)); ); return (0); } lista(nn) = {my(h = 0, nh); for (n=1, nn, h += 1/n; nh = numerator(h); if (isok(nh), print1(nh, ", "); ); ); } \\ _Michel Marcus, Dec 08 2018
Comments