This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322438 #16 Jan 24 2025 18:37:23 %S A322438 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %T A322438 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, %U A322438 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,4 %N A322438 Number of unordered pairs of factorizations of n into factors > 1 where no factor of one properly divides any factor of the other. %C A322438 First differs from A322437 at a(144) = 4, A322437(144) = 3. %C A322438 First differs from A379958 at a(120) = 2, A379958(120) = 1. %H A322438 Antti Karttunen, <a href="/A322438/b322438.txt">Table of n, a(n) for n = 1..65537</a> %H A322438 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %e A322438 The a(240) = 5 pairs of factorizations:: %e A322438 (4*4*15)|(4*6*10) %e A322438 (6*40)|(15*16) %e A322438 (8*30)|(12*20) %e A322438 (10*24)|(15*16) %e A322438 (12*20)|(15*16) %t A322438 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A322438 divpropQ[x_,y_]:=And[x!=y,Divisible[x,y]]; %t A322438 Table[Length[Select[Subsets[facs[n],{2}],And[!Or@@divpropQ@@@Tuples[#],!Or@@divpropQ@@@Reverse/@Tuples[#]]&]],{n,100}] %o A322438 (PARI) %o A322438 factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z)); %o A322438 is_proper_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if((fac1[i]!=fac2[j]) && (!(fac1[i]%fac2[j]) || !(fac2[j]%fac1[i])),return(0)))); (1); }; %o A322438 number_of_proper_ndfpairs(z) = sum(i=1,#z,sum(j=i+1,#z,is_proper_ndf_pair(z[i],z[j]))); %o A322438 A322438(n) = number_of_proper_ndfpairs(Vec(factorizations(n))); \\ _Antti Karttunen_, Jan 24 2025 %Y A322438 Cf. A001055, A285572, A285573, A303362, A303386, A304713, A305149, A305150, A305193, A316476, A317144, A322435, A322436, A322437, A322442, A379958. %K A322438 nonn %O A322438 1,120 %A A322438 _Gus Wiseman_, Dec 08 2018 %E A322438 Data section extended up to a(144) by _Antti Karttunen_, Jan 24 2025