A322441 Number of pairs of set partitions of {1,...,n} where no block of one is a subset or equal to any block of the other.
1, 0, 0, 0, 6, 60, 630, 9660, 192906
Offset: 0
Examples
The a(4) = 6 pairs of set partitions: {{1,2},{3,4}} and {{1,3},{2,4}}, {{1,2},{3,4}} and {{1,4},{2,3}}, {{1,3},{2,4}} and {{1,2},{3,4}}, {{1,3},{2,4}} and {{1,4},{2,3}}, {{1,4},{2,3}} and {{1,2},{3,4}}, {{1,4},{2,3}} and {{1,3},{2,4}}.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; stabQ[u_]:=stabQ[u,SubsetQ];stabQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[Tuples[sps[Range[n]],2],And[UnsameQ@@Join@@#,stabQ[Join@@#]]&]],{n,6}]
Comments