A322446 The number of solutions to usigma(k) > esigma(k) below 10^n, where usigma(k) is the sum of unitary divisors of k (A034448) and esigma(k) is the sum of exponential divisors of k (A051377).
5, 74, 776, 7770, 77794, 778337, 7784712, 77833385, 778307928, 7783494530
Offset: 1
Examples
Below 10^1 there are 5 numbers k with usigma(k) > esigma(k): 2, 3, 5, 6, and 7. Thus a(1) = 5.
Links
- Tim Trudgian, The sum of the unitary divisor function, Publications de l'Institut Mathématique (Beograd), Vol. 97, No. 111 (2015), pp. 175-180.
Programs
-
Mathematica
aQ[1] = False; fun[p_, e_] := DivisorSum[e, p^# &]; aQ[n_] := Times @@ (1 + Power @@@ (f = FactorInteger[n])) > Times @@ (fun @@@ f); c = 0; k = 1; s = {}; Do[While[k < 10^n, If[aQ[k], c++]; k++]; AppendTo[s, c], {n, 1, 6}]; s
Formula
Lim_{n->oo} a(n)/10^n = 0.778...
Comments