This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322448 #14 Dec 02 2020 03:19:27 %S A322448 16,48,64,80,81,112,144,162,176,192,208,240,256,272,304,320,324,336, %T A322448 368,400,405,432,448,464,496,512,528,560,567,576,592,624,625,648,656, %U A322448 688,704,720,729,752,768,784,810,816,832,848,880,891,912,944,960,976,1008 %N A322448 Numbers whose prime factorization contains at least one composite exponent. %C A322448 The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^4 + Sum_{q prime >= 5} 1/p^q - 1/p^(q-1)) = 0.05328066264472198953... (using the method of Shevelev, 2016). - _Amiram Eldar_, Nov 08 2020 %H A322448 Alois P. Heinz, <a href="/A322448/b322448.txt">Table of n, a(n) for n = 1..10000</a> %H A322448 Vladimir Shevelev, <a href="https://arxiv.org/abs/1602.04244">A fast computation of density of exponentially S-numbers</a>, arXiv:1602.04244 [math.NT], 2016. %e A322448 16 = 2^4 is a term because 4 is a composite exponent here. %p A322448 a:= proc(n) option remember; local k; for k from 1+ %p A322448 `if`(n=1, 0, a(n-1)) while andmap(i-> i[2]=1 or %p A322448 isprime(i[2]), ifactors(k)[2]) do od; k %p A322448 end: %p A322448 seq(a(n), n=1..70); %t A322448 Select[Range[1000], AnyTrue[FactorInteger[#][[;; , 2]], CompositeQ] &] (* _Amiram Eldar_, Nov 08 2020 *) %o A322448 (PARI) isok(m) = #select(x->((x>1) && !isprime(x)), factor(m)[,2]) > 0; \\ _Michel Marcus_, Dec 02 2020 %Y A322448 Cf. A002808, A322449. %K A322448 nonn %O A322448 1,1 %A A322448 _Alois P. Heinz_, Dec 08 2018