cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322448 Numbers whose prime factorization contains at least one composite exponent.

This page as a plain text file.
%I A322448 #14 Dec 02 2020 03:19:27
%S A322448 16,48,64,80,81,112,144,162,176,192,208,240,256,272,304,320,324,336,
%T A322448 368,400,405,432,448,464,496,512,528,560,567,576,592,624,625,648,656,
%U A322448 688,704,720,729,752,768,784,810,816,832,848,880,891,912,944,960,976,1008
%N A322448 Numbers whose prime factorization contains at least one composite exponent.
%C A322448 The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^4 + Sum_{q prime >= 5} 1/p^q - 1/p^(q-1)) = 0.05328066264472198953... (using the method of Shevelev, 2016). - _Amiram Eldar_, Nov 08 2020
%H A322448 Alois P. Heinz, <a href="/A322448/b322448.txt">Table of n, a(n) for n = 1..10000</a>
%H A322448 Vladimir Shevelev, <a href="https://arxiv.org/abs/1602.04244">A fast computation of density of exponentially S-numbers</a>, arXiv:1602.04244 [math.NT], 2016.
%e A322448 16 = 2^4 is a term because 4 is a composite exponent here.
%p A322448 a:= proc(n) option remember; local k; for k from 1+
%p A322448       `if`(n=1, 0, a(n-1)) while andmap(i-> i[2]=1 or
%p A322448        isprime(i[2]), ifactors(k)[2]) do od; k
%p A322448     end:
%p A322448 seq(a(n), n=1..70);
%t A322448 Select[Range[1000], AnyTrue[FactorInteger[#][[;; , 2]], CompositeQ] &] (* _Amiram Eldar_, Nov 08 2020 *)
%o A322448 (PARI) isok(m) = #select(x->((x>1) && !isprime(x)), factor(m)[,2]) > 0; \\ _Michel Marcus_, Dec 02 2020
%Y A322448 Cf. A002808, A322449.
%K A322448 nonn
%O A322448 1,1
%A A322448 _Alois P. Heinz_, Dec 08 2018