This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322457 #10 Dec 31 2018 02:42:24 %S A322457 1,3,4,6,10,12,9,11,15,17,21,27,16,18,22,24,28,34,36,38,40,48,25,27, %T A322457 31,33,37,43,45,47,49,55,57,59,61,75,36,38,42,44,48,54,56,58,60,66,68, %U A322457 70,72,78,80,84,86,90,108,49,51,55,57,61,67,69,71,73,79,81 %N A322457 Irregular triangle: Row n contains numbers k that have recursively symmetrical partitions having Durfee square with side length n. %C A322457 For all n, n^2 <= k <= 3*n^2. %C A322457 For n > 5, some k may have more than 1 recursively self-conjugate partitions in the same row. For example, k = 90 in row 6 has two recursively self-conjugate partitions (RSCPs) with Durfee square of 6: (12,12,12,9,9,9,6,6,6,3,3,3) and (12,11,11,11,11,7,6,5,5,5,5,1). These RSCPs can be defined by dendritically laying out squares in the series {6,3,3} and {6,5,1} respectively. %H A322457 Michael De Vlieger, <a href="/A322457/b322457.txt">Table of n, a(n) for n = 1..10391</a> (rows 1 <= n <= 36, flattened) %H A322457 Michael De Vlieger, <a href="/A322457/a322457.png">Illustration for A322457</a> %H A322457 Michael De Vlieger, <a href="/A322457/a322457_1.png">Annotated plot of k <= 1200 in rows n <= 34</a>, vertical exaggeration 12x. %F A322457 First term of row n = n^2 = A000290(n). %F A322457 Last term of row n = 3*n^2 = 3*A000290(n). %e A322457 Triangle begins: %e A322457 Row 1: 1, 3; %e A322457 Row 2: 4, 6, 10, 12; %e A322457 Row 3: 9, 11, 15, 17, 21, 27; %e A322457 Row 4: 16, 18, 22, 24, 28, 34, 36, 38, 40, 48; %e A322457 ... %e A322457 Row 2 contains the following recursively self-conjugate partitions with Durfee square with side length 2. Below are diagrams that place {2^0, 2^1, 2^2, ... 2^(m-1)} squares of side lengths in S = {k_1, k_2, k_3, ..., k_m}: %e A322457 (2,2), sum 4, or in terms of squares, {2}: %e A322457 11 %e A322457 11; %e A322457 (3,2,1), sum 6, or in terms of squares, {2,1}: %e A322457 112 %e A322457 11 %e A322457 2; %e A322457 (4,3,2,1), sum 10, or in terms of squares, {2,1,1}: %e A322457 1123 %e A322457 113 %e A322457 23 %e A322457 3; %e A322457 (4,4,2,2), sum 12, or in terms of squares, {2,2}: %e A322457 1122 %e A322457 1122 %e A322457 22 %e A322457 22. %t A322457 f[n_] := Block[{w = {n}, c}, c[x_] := Apply[Times, Most@ x - Reverse@ Accumulate@ Reverse@ Rest@ x]; Reap[Do[Which[And[Length@ w == 2, SameQ @@ w], Sow[w]; Break[], Length@ w == 1, Sow[w]; AppendTo[w, 1], c[w] > 0, Sow[w]; AppendTo[w, 1], True, Sow[w]; w = MapAt[1 + # &, Drop[w, -1], -1] ], {i, Infinity}] ][[-1, 1]] ]; Array[Union@ Map[Total@ MapIndexed[#1^2*2^First[#2 - 1] &, #] &, f[#]] &, 7] // Flatten %Y A322457 Cf.: A190899, A190900, A321223, A322156. %K A322457 nonn,tabf,easy %O A322457 1,2 %A A322457 _Michael De Vlieger_, Dec 11 2018