A322461 Sum of n-th powers of the roots of x^3 + 8*x^2 + 5*x - 1.
3, -8, 54, -389, 2834, -20673, 150825, -1100401, 8028410, -58574450, 427353149, -3117924532, 22748056061, -165967472679, 1210881576595, -8834467193304, 64455362190778, -470259679983109, 3430966161717678, -25031975531635101, 182630713764509309
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-8,-5,1).
Programs
-
Mathematica
LinearRecurrence[{-8, -5, 1}, {3, -8, 54}, 50] (* Amiram Eldar, Dec 09 2018 *)
-
PARI
Vec((3 + x)*(1 + 5*x) / (1 + 8*x + 5*x^2 - x^3) + O(x^25)) \\ Colin Barker, Dec 09 2018
-
PARI
polsym(x^3 + 8*x^2 + 5*x - 1, 25) \\ Joerg Arndt, Dec 17 2018
Formula
a(n) = (2*sqrt(7)*A^2/C)^n + (2*sqrt(7)*B^2/A)^n + (2*sqrt(7)*C^2/B)^n, where A = cos(2*Pi/7), B = cos(4*Pi/7), C = cos(8*Pi/7).
a(n) = -8*a(n-2) - 5*a(n-2) + a(n-3) for n > 2.
G.f.: (3 + x)*(1 + 5*x) / (1 + 8*x + 5*x^2 - x^3). - Colin Barker, Dec 09 2018
Comments