This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322462 #50 Feb 14 2019 14:24:01 %S A322462 0,1,12,13,36,37,72,73,120,121,180,181,252,253,336,337,432,433,540, %T A322462 541,660,661,792,793,936,937,1092,1093,1260,1261,1440,1441,1632,1633, %U A322462 1836,1837,2052,2053,2280,2281,2520,2521,2772,2773,3036,3037,3312,3313,3600 %N A322462 Numbers on the 0-1-12 line in a spiral on a grid of equilateral triangles. %C A322462 Sequence found by reading the line from 0, in the direction 0, 1, 12, ... in the triangle spiral. %H A322462 Colin Barker, <a href="/A322462/b322462.txt">Table of n, a(n) for n = 0..1000</a> %H A322462 Hans G. Oberlack, <a href="/A322462/a322462.png">Triangle spiral line 0-1-12-13</a> %H A322462 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A322462 a(n) = (3/2)*n*(n+2) = A049598(n/2) if n even, a(n) = a(n-1)+1 if n odd. %F A322462 G.f.: -x*(x^3-x^2+11*x+1)/((x+1)^2*(x-1)^3). - _Alois P. Heinz_, Dec 09 2018 %F A322462 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4. - _Colin Barker_, Dec 09 2018 %e A322462 a(0) = 0 %e A322462 a(1) = a(1 - 1) + 1 = 0 + 1 %e A322462 a(2) = (3/2) * 2 * (2 + 2) = 3 * 4 = 12 %e A322462 a(3) = a(3 - 1) + 1 = 12 + 1 = 13 %e A322462 a(4) = (3/2) * 4*(4 + 2) = 3 * 2 * 6 = 6 * 6 = 36 %e A322462 a(5) = a(4) + 1 = 36 + 1 = 37. %p A322462 seq(coeff(series(-x*(x^3-x^2+11*x+1)/((x+1)^2*(x-1)^3),x,n+1), x, n), n = 0 .. 50); # _Muniru A Asiru_, Dec 19 2018 %t A322462 a[0] = 0; a[n_] := a[n] = If[OddQ[n], a[n - 1] + 1, 3/2*n*(n + 2)]; Array[a, 50, 0] (* _Amiram Eldar_, Dec 09 2018 *) %o A322462 (PARI) concat(0, Vec(x*(1 + 11*x - x^2 + x^3) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ _Colin Barker_, Dec 09 2018 %Y A322462 Cf. A049598. %K A322462 nonn,easy %O A322462 0,3 %A A322462 _Hans G. Oberlack_, Dec 09 2018 %E A322462 Examples added by _Hans G. Oberlack_, Dec 20 2018