This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322478 #7 Dec 10 2018 02:40:46 %S A322478 13,73,97,109,157,193,241,313,337,397,409,421,431,577,601,631,661,673, %T A322478 691,797,877,929,937,941,1009,1019,1021,1033,1063,1093,1103,1117,1123, %U A322478 1129,1151,1153,1201,1249,1297,1303,1307,1321,1381,1429,1439,1453,1489,1549,1597,1609,1619,1657,1693,1741 %N A322478 Primes that are not base-12 deletable primes (written in base 10). %C A322478 A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. %C A322478 Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. %C A322478 Complement of all primes and A322477. %H A322478 Robert Price, <a href="/A322478/b322478.txt">Table of n, a(n) for n = 1..319</a> %t A322478 b = 12; d = {}; %t A322478 p = Select[Range[2, 10000], PrimeQ[#] &]; %t A322478 For[i = 1, i <= Length[p], i++, %t A322478 c = IntegerDigits[p[[i]], b]; %t A322478 If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]]; %t A322478 For[j = 1, j <= Length[c], j++, %t A322478 t = Delete[c, j]; %t A322478 If[t[[1]] == 0, Continue[]]; %t A322478 If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* _Robert Price_, Dec 09 2018 *) %Y A322478 Cf. A080608, A080603, A096235-A096246, A321657. %K A322478 nonn,base,easy %O A322478 1,1 %A A322478 _Robert Price_, Dec 09 2018