This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322495 #14 Apr 22 2021 08:48:36 %S A322495 1,1,2,8,68,1262,51420,4577274,888837716,376116199534,346688563051200, %T A322495 695975307003529228 %N A322495 Number of tilings of an n X n square using V (2m+1)-ominoes (m >= 0) in standard orientation. %C A322495 The shapes of the tiles are: %C A322495 ._. %C A322495 ._. | | %C A322495 ._. | | | | %C A322495 ._. | |_. | |_._. | |_._._. %C A322495 |_| |___| |_____| |_______| ... . %H A322495 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polyomino">Polyomino</a> %e A322495 a(3) = 8: %e A322495 ._____. ._____. ._____. ._____. ._____. ._____. ._____. ._____. %e A322495 |_|_|_| | |_|_| |_|_|_| |_| |_| |_|_|_| |_| |_| | |_|_| | | |_| %e A322495 |_|_|_| |___|_| | |_|_| |_|___| |_| |_| | |___| | |_|_| | |___| %e A322495 |_|_|_| |_|_|_| |___|_| |_|_|_| |_|___| |___|_| |_____| |_____|. %e A322495 . %p A322495 b:= proc(n, l) option remember; local k, m, r; %p A322495 if n=0 or l=[] then 1 %p A322495 elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l)) %p A322495 elif l[-1]=n then b(n, subsop(-1=[][], l)) %p A322495 else for k while l[k]>0 do od; r:= 0; %p A322495 for m from 0 while k+m<=nops(l) and l[k+m]=0 and n>m do %p A322495 r:= r+b(n, [l[1..k-1][], 1$m, m+1, l[k+m+1..nops(l)][]]) %p A322495 od; r %p A322495 fi %p A322495 end: %p A322495 a:= n-> b(n, [0$n]): %p A322495 seq(a(n), n=0..9); %t A322495 b[n_, l_] := b[n, l] = Module[{k, m, r}, Which[n == 0 || l == {}, 1, Min[l] > 0, Function[t, b[n-t, l-t]][Min[l]], l[[-1]] == n, b[n, ReplacePart[l, -1 -> Nothing]], True, For[k = 1, l[[k]] > 0, k++]; r = 0; For[m = 0, k + m <= Length[l] && l[[k+m]] == 0 && n > m, m++, r = r + b[n, Join[l[[1 ;; k-1]], Array[1&, m], {m+1}, l[[k+m+1 ;; Length[l]]]]]]; r]]; %t A322495 a[n_] := b[n, Array[0&, n]]; %t A322495 a /@ Range[0, 9] (* _Jean-François Alcover_, Apr 22 2021, after _Alois P. Heinz_ *) %Y A322495 Main diagonal of A322494. %K A322495 nonn,more %O A322495 0,3 %A A322495 _Alois P. Heinz_, Dec 12 2018