This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322497 #14 May 02 2022 18:35:34 %S A322497 1,1,5,18,68,233,838,2989,10687,38097,136002,485370,1732377,6182628, %T A322497 22065919,78752901,281068809,1003130814,3580164896,12777572157, %U A322497 45603031014,162756761629,580877276331,2073145244569,7399034871398,26407082201462,94246615039341 %N A322497 Number of tilings of a 4 X n rectangle using V (2m+1)-ominoes (m >= 0) in standard orientation. %C A322497 The shapes of the tiles are: %C A322497 ._. %C A322497 ._. | | %C A322497 ._. | | | | %C A322497 ._. | |_. | |_._. | |_._._. %C A322497 |_| |___| |_____| |_______| . %H A322497 Alois P. Heinz, <a href="/A322497/b322497.txt">Table of n, a(n) for n = 0..1000</a> %H A322497 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polyomino">Polyomino</a> %H A322497 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,9,17,13,5,-2,-2). %F A322497 G.f.: -(x+1)*(x^3+x-1)/((2*x^2+1)*(x^6+x^5-3*x^4-7*x^3-7*x^2-x+1)). %t A322497 LinearRecurrence[{1,5,9,17,13,5,-2,-2},{1,1,5,18,68,233,838,2989},30] (* _Harvey P. Dale_, May 02 2022 *) %Y A322497 Column k=4 of A322494. %K A322497 nonn,easy %O A322497 0,3 %A A322497 _Alois P. Heinz_, Dec 12 2018