This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322506 #8 May 24 2022 00:10:27 %S A322506 0,0,0,3,1,1,3,0,6,4,7,5,2,9,9,8,10,8,9,1,13,18,1,2,8,15,26,10,22,1, %T A322506 18,9,20,10,2,6,13,19,16,38,38,3,32,5,39,24,7,27,14,41,20,39,32,7,20, %U A322506 35,44,50,24,34,51,14,39,47,49,15,61,54,60,52,34,60,32,72,48,12,67,52,22,48 %N A322506 Factorial expansion of 1/exp(2) = Sum_{n>=1} a(n)/n!. %H A322506 <a href="https://oeis.org/index/Fa#facbase">Index entries for factorial base representation</a> %e A322506 1/exp(2) = 0 + 0/2! + 0/3! + 3/4! + 1/5! + 1/6! + 3/7! + 0/8! + 6/9! +... %t A322506 With[{b = 1/E^2}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] %o A322506 (PARI) default(realprecision, 250); b = exp(-2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) %o A322506 (Magma) SetDefaultRealField(RealField(250)); [Floor(Exp(-2))] cat [Floor(Factorial(n)*Exp(-2)) - n*Floor(Factorial((n-1))*Exp(-2)) : n in [2..80]]; %o A322506 (Sage) %o A322506 b=exp(-2); %o A322506 def a(n): %o A322506 if (n==1): return floor(b) %o A322506 else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b)) %o A322506 [a(n) for n in (1..80)] %Y A322506 Cf. A092553 (decimal expansion), 0 U A001204 (continued fraction). %Y A322506 Cf. A054977 (e), A067840 (e^2), A068453 (sqrt(e)), A237420 (1/e). %K A322506 nonn %O A322506 1,4 %A A322506 _G. C. Greubel_, Dec 12 2018