This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322510 #22 Dec 20 2019 08:55:55 %S A322510 0,1,-1,4,-2,2,-4,5,3,6,-10,7,-3,8,-16,15,-5,12,-6,19,-7,-9,-11,22,-8, %T A322510 9,-15,28,-12,-14,-18,16,14,10,-20,13,11,17,-29,20,18,21,-35,23,-41, %U A322510 24,-46,57,-13,26,-42,35,-17,25,-55,29,27,30,-54,31,-59,32,-68 %N A322510 a(1) = 0, and for any n > 0, a(2*n) = a(n) + k(n) and a(2*n+1) = a(n) - k(n) where k(n) is the least positive integer not leading to a duplicate term in sequence a. %C A322510 The point is that the same k(n) must be used for both a(2*n) and a(2*n+1). - _N. J. A. Sloane_, Dec 17 2019 %C A322510 Apparently every signed integer appears in the sequence. %H A322510 Rémy Sigrist, <a href="/A322510/b322510.txt">Table of n, a(n) for n = 1..10000</a> %F A322510 a(n) = (a(2*n) + a(2*n+1))/2. %e A322510 The first terms, alongside k(n) and associate children, are: %e A322510 n a(n) k(n) a(2*n) a(2*n+1) %e A322510 -- ---- ---- ------ -------- %e A322510 1 0 1 1 -1 %e A322510 2 1 3 4 -2 %e A322510 3 -1 3 2 -4 %e A322510 4 4 1 5 3 %e A322510 5 -2 8 6 -10 %e A322510 6 2 5 7 -3 %e A322510 7 -4 12 8 -16 %e A322510 8 5 10 15 -5 %e A322510 9 3 9 12 -6 %e A322510 10 6 13 19 -7 %o A322510 (PARI) lista(nn) = my (a=[0], s=Set(0)); for (n=1, ceil(nn/2), for (k=1, oo, if (!setsearch(s, a[n]+k) && !setsearch(s, a[n]-k), a=concat(a, [a[n]+k, a[n]-k]); s=setunion(s, Set([a[n]+k, a[n]-k])); break))); a[1..nn] %Y A322510 For k(n) see A330337, A330338. %Y A322510 See A305410, A304971 and A322574-A322575 for similar sequences. %K A322510 sign,look %O A322510 1,4 %A A322510 _Rémy Sigrist_, Dec 13 2018