This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322512 #8 Dec 13 2018 04:59:24 %S A322512 0,0,0,1,0,0,1,0,1,0,3,1,0,1,0,3,1,0,0,0,0,4,2,3,0,0,0,0,4,2,2,0,3,1, %T A322512 2,0,7,4,2,2,0,3,1,2,0,7,4,2,5,0,0,1,1,0,0,8,5,3,2,1,0,0,1,3,0,0,8,5, %U A322512 3,2,1,0,1,0,1,0,1,0,10,7,7,3,2,1,0,1,0,1,0,1,0 %N A322512 Triangle read by rows of the 2-adic valuation (A007814) of Stirling numbers of first kind (A008275). %H A322512 Min Qiu, Shaofang Hong, <a href="https://arxiv.org/abs/1812.04539">The 2-adic valuations of Stirling numbers of the first kind</a>, arXiv:1812.04539 [math.NT], 2018. %F A322512 T(n,k) = A007814(A008275(n,k)). %e A322512 Triangle begins: %e A322512 0, %e A322512 0, 0, %e A322512 1, 0, 0, %e A322512 1, 0, 1, 0, %e A322512 3, 1, 0, 1, 0, %e A322512 3, 1, 0, 0, 0, 0, %e A322512 4, 2, 3, 0, 0, 0, 0, %e A322512 4, 2, 2, 0, 3, 1, 2, 0, %e A322512 ... %t A322512 T[n_, k_] := IntegerExponent[StirlingS1[n, k], 2]; Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Dec 13 2018 *) %o A322512 (PARI) T(n,k) = valuation(stirling(n, k, 1), 2); %o A322512 row(n) = vector(n, k, T(n,k)); %o A322512 tabl(nn) = vector(nn, k, row(k));(PARI) T(n,k) = valuation(stirling(n, k, 1), 2); %Y A322512 Cf. A007814, A008275. %K A322512 nonn,tabl %O A322512 1,11 %A A322512 _Michel Marcus_, Dec 13 2018