This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322525 #25 Jan 27 2019 09:02:09 %S A322525 2700,5292,9000,13068,18252,24300,24500,24696,31212,38988,47628,55125, %T A322525 57132,60500,68600,84500,90828,95832,103788,117612,136125,144500, %U A322525 147852,158184,164268,166012,180500,181548,190125,199692,218700,231525,231868,238572,243000,264500,266200,280908,303372,325125 %N A322525 Numbers such that the list of exponents of their factorization is a palindromic list of primes. %C A322525 I mean nontrivial palindrome: more than one number and not all equal numbers. %C A322525 Factorization is meant to produce p1^e1*...*pk^ek, with pi in increasing order. %e A322525 9000 is a term as 9000=2^3*3^2*5^3 and the correspondent exponents list [3,2,3] is a palindromic list of primes. %t A322525 aQ[s_] := Length[Union[s]]>1 && AllTrue[s, PrimeQ] && PalindromeQ[s]; Select[Range[1000], aQ[FactorInteger[#][[;;,2]]] &] (* _Amiram Eldar_, Dec 14 2018 *) %o A322525 (Python) %o A322525 from sympy.ntheory import factorint,isprime %o A322525 def all_prime(l): %o A322525 for i in l: %o A322525 if not(isprime(i)): return(False) %o A322525 return(True) %o A322525 def all_equal(l): %o A322525 ll=len(l) %o A322525 set_l=set(l) %o A322525 lsl=list(set_l) %o A322525 llsl=len(lsl) %o A322525 return(llsl==1) %o A322525 def pal(l): %o A322525 return(l == l[::-1]) %o A322525 n=350000 %o A322525 r="" %o A322525 lp=[] %o A322525 lexp=[] %o A322525 def calc(n): %o A322525 global lp,lexp %o A322525 a=factorint(n) %o A322525 lp=[] %o A322525 for p in a.keys(): %o A322525 lp.append(p) %o A322525 lexp=[] %o A322525 for exp in a.values(): %o A322525 lexp.append(exp) %o A322525 return %o A322525 for i in range(4,n): %o A322525 calc(i) %o A322525 if len(lexp)>1: %o A322525 if all_prime(lexp): %o A322525 if not(all_equal(lexp)): %o A322525 if pal(lexp): %o A322525 r += ","+str(i) %o A322525 print(r[1:]) %o A322525 (PARI) isok(n) = (ve=factor(n)[,2]~) && (Vecrev(ve)==ve) && (#ve>1) && (#Set(ve)>1) && (#select(x->(!isprime(x)), ve) == 0); \\ _Michel Marcus_, Dec 14 2018 %Y A322525 Subsequence of A242414. %K A322525 nonn %O A322525 1,1 %A A322525 _Pierandrea Formusa_, Dec 13 2018