This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322535 #18 Oct 01 2024 11:06:13 %S A322535 1,1107,38165,398567,2306025,9377467,30162301,82073295,197018321, %T A322535 429042211,864287973,1633586615,2927984825,5017519755,8273550157, %U A322535 13194953119,20438495649,30853690355,45522444469,65803811463,93384154505,130333031003,179165107485,242908414063 %N A322535 Number of arrays of 8 integers in -n..n with sum zero. %H A322535 Seiichi Manyama, <a href="/A322535/b322535.txt">Table of n, a(n) for n = 0..10000</a> %H A322535 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8, -28, 56, -70, 56, -28, 8, -1). %F A322535 a(n) = [x^(8*n)] (Sum_{k=0..2*n} x^k)^8. %F A322535 a(n) = (2*n+1)*(9664*n^6+28992*n^5+37360*n^4+26400*n^3+10936*n^2+2568*n+315)/315. %t A322535 a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^8, x], x, 8n]; Array[a, 25, 0] (* _Amiram Eldar_, Dec 14 2018 *) %o A322535 (PARI) {a(n) = polcoeff((sum(k=0, 2*n, x^k))^8, 8*n, x)} %Y A322535 Row 8 of A201552. %K A322535 nonn %O A322535 0,2 %A A322535 _Seiichi Manyama_, Dec 14 2018