cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322550 Table read by ascending antidiagonals: T(n, k) is the minimum number of cubes necessary to fill a right square prism with base area n^2 and height k.

This page as a plain text file.
%I A322550 #27 Jun 24 2024 15:53:10
%S A322550 1,4,2,9,1,3,16,18,12,4,25,4,1,2,5,36,50,48,36,20,6,49,9,75,1,45,3,7,
%T A322550 64,98,4,100,80,2,28,8,81,16,147,18,1,12,63,4,9,100,162,192,196,180,
%U A322550 150,112,72,36,10,121,25,9,4,245,1,175,2,3,5,11,144,242,300,324,320,294,252,200,144,90,44,12
%N A322550 Table read by ascending antidiagonals: T(n, k) is the minimum number of cubes necessary to fill a right square prism with base area n^2 and height k.
%H A322550 Stefano Spezia, <a href="/A322550/b322550.txt">First 150 antidiagonals of the table, flattened</a>
%F A322550 T(n, k) = n^2*k/gcd(n, k)^3.
%F A322550 T(n, k) = A000290(n)*k/A000578(A050873(n,k)).
%F A322550 X(n, k) = T(n + 1 - k, k).
%F A322550 X(2*n - 1, n) = A000012(n).
%F A322550 Product_{k=1..n} X(n, k)^(1/3) = A119619(n+1). - _Stefano Spezia_, Jun 24 2024
%e A322550 The table T starts in row n = 1 with columns k >= 1 as:
%e A322550    1     2     3     4     5     6     7     8     9 ...
%e A322550    4     1    12     2    20     3    28     4    36 ...
%e A322550    9    18     1    36    45     2    63    72     3 ...
%e A322550   16     4    48     1    80    12   112     2   144 ...
%e A322550   25    50    75   100     1   150   175   200   225 ...
%e A322550   36     9     4    18   180     1   252    36    12 ...
%e A322550   49    98   147   196   245   294     1   392   441 ...
%e A322550   64    16   192     4   320    48   448     1   576 ...
%e A322550   81   162     9   324   405    18   567   648     1 ...
%e A322550 ...
%e A322550 The triangle X(n, k) begins
%e A322550   n\k|   1     2     3     4     5     6     7     8     9
%e A322550   ---+----------------------------------------------------
%e A322550    1 |   1
%e A322550    2 |   4     2
%e A322550    3 |   9     1     3
%e A322550    4 |  16    18    12     4
%e A322550    5 |  25     4     1     2     5
%e A322550    6 |  36    50    48    36    20     6
%e A322550    7 |  49     9    75     1    45     3     7
%e A322550    8 |  64    98     4   100    80     2    28     8
%e A322550    9 |  81    16   147    18     1    12    63     4     9
%e A322550 ...
%p A322550 a := (n, k) -> (n+1-k)^2*k/gcd(n+1-k, k)^3: seq(seq(a(n, k), k = 1 .. n), n = 1 .. 12)
%t A322550 T[n_,k_]:=n^2*k/GCD[n,k]^3; Flatten[Table[T[n-k+1,k], {n, 12}, {k, n}]]
%o A322550 (GAP) Flat(List([1..12], n->List([1..n], k->(n+1-k)^2*k/GcdInt(n+1-k,k)^3)));
%o A322550 (Magma) [[(n+1-k)^2*k/Gcd(n+1-k,k)^3: k in [1..n]]: n in [1..12]]; // triangle output
%o A322550 (Maxima) sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 1 thru n do disp(sjoin(makelist((i+1-j)^2*j/gcd(i+1-j,j)^3, j, 1, i), " ")); display_triangle(12);
%o A322550 (PARI)
%o A322550 T(n, k) = (n+1-k)^2*k/gcd(n+1-k,k)^3;
%o A322550 tabl(nn) = for(i=1, nn, for(j=1, i, print1(T(i, j), ", ")); print);
%o A322550 tabl(12) \\ triangle output
%Y A322550 Cf. A000012 (main diagonal of the table), A000027 (1st row of the table or diagonal of the triangle), A000290 (k=1), A000578, A011379 (superdiagonal of the table), A045991 (subdiagonal of the table), A050873, A119619, A320043 (row sums of the triangle).
%K A322550 nonn,tabl
%O A322550 1,2
%A A322550 _Stefano Spezia_, Dec 15 2018