This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322553 #7 Dec 16 2018 17:58:55 %S A322553 1,3,5,7,9,11,17,19,21,23,25,27,31,41,49,53,57,59,63,67,81,83,97,103, %T A322553 109,115,121,125,127,131,133,147,157,159,171,179,189,191,211,227,241, %U A322553 243,277,283,289,311,331,343,353,361,367,371,393,399,401,419,431,441 %N A322553 Odd numbers whose product of prime indices is a prime power. %C A322553 Differs from A322400 in having 1 and lacking 377, the MM-number of {{1,2},{1,3}}. %C A322553 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A322553 The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. The sequence of multiset partitions whose MM-numbers belong to this sequence begins: %e A322553 1: {} %e A322553 3: {{1}} %e A322553 5: {{2}} %e A322553 7: {{1,1}} %e A322553 9: {{1},{1}} %e A322553 11: {{3}} %e A322553 17: {{4}} %e A322553 19: {{1,1,1}} %e A322553 21: {{1},{1,1}} %e A322553 23: {{2,2}} %e A322553 25: {{2},{2}} %e A322553 27: {{1},{1},{1}} %e A322553 31: {{5}} %e A322553 41: {{6}} %e A322553 49: {{1,1},{1,1}} %e A322553 53: {{1,1,1,1}} %e A322553 57: {{1},{1,1,1}} %e A322553 59: {{7}} %e A322553 63: {{1},{1},{1,1}} %e A322553 67: {{8}} %e A322553 81: {{1},{1},{1},{1}} %e A322553 83: {{9}} %e A322553 97: {{3,3}} %t A322553 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A322553 Select[Range[1,100,2],#==1||PrimePowerQ[Times@@primeMS[#]]&] %o A322553 (PARI) isok(n) = {if (n % 2, my(f = factor(n), pk = prod(k=1, #f~, primepi(f[k,1]))); (pk == 1) || isprimepower(pk););} \\ _Michel Marcus_, Dec 16 2018 %Y A322553 Cf. A003963, A056239, A112798, A290103, A302242, A320325, A320698. %K A322553 nonn %O A322553 1,2 %A A322553 _Gus Wiseman_, Dec 15 2018