This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322556 #15 Aug 30 2019 15:21:20 %S A322556 0,1,12,448,61440,32505856,67645734912,558551906910208, %T A322556 18374686479671623680,2413129272746388704198656, %U A322556 1266412660188944021221804081152,2657157917355198038900481496478384128,22295300680659888126120304278929453214597120 %N A322556 The number of eigenvectors with eigenvalue 1 summed over all linear operators on the vector space GF(2)^n. %C A322556 Generally, for any prime power q, the total number of eigenvectors corresponding to any element lambda in the field GF(q) summed over all operators on GF(q)^n is equal to (q^n-1)*q^(n^2-n). %F A322556 a(n) = (2^n-1)*2^(n^2-n). %t A322556 Map[Total,Table[Table[(q^(n - k) - 1) Product[(q^n - q^i)^2/(q^k - q^i), {i, 0,k - 1}] /. q -> 2, {k, 0, n}], {n, 0, 11}]] %Y A322556 Cf. A286331. %K A322556 nonn %O A322556 0,3 %A A322556 _Geoffrey Critzer_, Aug 28 2019